| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem40.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem40.a | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem40.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem40.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem40.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem40.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem5 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑗 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | etransclem34 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ∈  ( 𝑋 –cn→ ℂ ) ) |