| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem41.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 2 |  | etransclem41.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | etransclem41.mp | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  <  𝑃 ) | 
						
							| 4 |  | etransclem41.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 5 | 1 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 6 | 5 | nnred | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 7 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 9 | 8 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 10 | 6 9 | ltnled | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑀 )  <  𝑃  ↔  ¬  𝑃  ≤  ( ! ‘ 𝑀 ) ) ) | 
						
							| 11 | 3 10 | mpbid | ⊢ ( 𝜑  →  ¬  𝑃  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 12 | 8 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 13 | 12 5 | jca | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℤ  ∧  ( ! ‘ 𝑀 )  ∈  ℕ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ∥  ( ! ‘ 𝑀 ) )  →  ( 𝑃  ∈  ℤ  ∧  ( ! ‘ 𝑀 )  ∈  ℕ ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑃  ∥  ( ! ‘ 𝑀 ) )  →  𝑃  ∥  ( ! ‘ 𝑀 ) ) | 
						
							| 16 |  | dvdsle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( ! ‘ 𝑀 )  ∈  ℕ )  →  ( 𝑃  ∥  ( ! ‘ 𝑀 )  →  𝑃  ≤  ( ! ‘ 𝑀 ) ) ) | 
						
							| 17 | 14 15 16 | sylc | ⊢ ( ( 𝜑  ∧  𝑃  ∥  ( ! ‘ 𝑀 ) )  →  𝑃  ≤  ( ! ‘ 𝑀 ) ) | 
						
							| 18 | 11 17 | mtand | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ! ‘ 𝑀 ) ) | 
						
							| 19 |  | fzfid | ⊢ ( ⊤  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 20 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 21 | 20 | znegcld | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  - 𝑗  ∈  ℤ ) | 
						
							| 22 | 21 | zcnd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  - 𝑗  ∈  ℂ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ⊤  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  - 𝑗  ∈  ℂ ) | 
						
							| 24 | 19 23 | fprodabs2 | ⊢ ( ⊤  →  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( abs ‘ - 𝑗 ) ) | 
						
							| 25 | 24 | mptru | ⊢ ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( abs ‘ - 𝑗 ) | 
						
							| 26 | 20 | zcnd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 27 | 26 | absnegd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( abs ‘ - 𝑗 )  =  ( abs ‘ 𝑗 ) ) | 
						
							| 28 | 20 | zred | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 29 |  | 0red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 30 |  | 1red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 31 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  1 ) | 
						
							| 33 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ≤  𝑗 ) | 
						
							| 34 | 29 30 28 32 33 | ltletrd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  𝑗 ) | 
						
							| 35 | 29 28 34 | ltled | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  ≤  𝑗 ) | 
						
							| 36 | 28 35 | absidd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( abs ‘ 𝑗 )  =  𝑗 ) | 
						
							| 37 | 27 36 | eqtrd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( abs ‘ - 𝑗 )  =  𝑗 ) | 
						
							| 38 | 37 | prodeq2i | ⊢ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( abs ‘ - 𝑗 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑗 | 
						
							| 39 | 25 38 | eqtri | ⊢ ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑗 | 
						
							| 40 |  | fprodfac | ⊢ ( 𝑀  ∈  ℕ0  →  ( ! ‘ 𝑀 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑗 ) | 
						
							| 41 | 1 40 | syl | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑗 ) | 
						
							| 42 | 39 41 | eqtr4id | ⊢ ( 𝜑  →  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 )  =  ( ! ‘ 𝑀 ) ) | 
						
							| 43 | 42 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 )  ↔  𝑃  ∥  ( ! ‘ 𝑀 ) ) ) | 
						
							| 44 | 18 43 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) ) | 
						
							| 45 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 46 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  - 𝑗  ∈  ℤ ) | 
						
							| 47 | 45 46 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ∈  ℤ ) | 
						
							| 48 |  | dvdsabsb | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ∈  ℤ )  →  ( 𝑃  ∥  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ↔  𝑃  ∥  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) ) ) | 
						
							| 49 | 12 47 48 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ↔  𝑃  ∥  ( abs ‘ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) ) ) | 
						
							| 50 | 44 49 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) | 
						
							| 51 |  | prmdvdsexp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( 𝑃  ∥  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 )  ↔  𝑃  ∥  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) ) | 
						
							| 52 | 2 47 8 51 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 )  ↔  𝑃  ∥  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ) ) | 
						
							| 53 | 50 52 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) | 
						
							| 54 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 55 |  | eqeq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  =  0  ↔  𝑗  =  0 ) ) | 
						
							| 56 | 55 | ifbid | ⊢ ( 𝑘  =  𝑗  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  0 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 57 | 56 | cbvmptv | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  0 ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 58 | 8 1 4 54 57 | etransclem35 | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 60 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  - 𝑗  ∈  ℂ ) | 
						
							| 61 | 45 60 | fprodcl | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗  ∈  ℂ ) | 
						
							| 62 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 63 | 61 62 | expcld | ⊢ ( 𝜑  →  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 64 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 65 | 8 64 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 66 | 65 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 67 | 66 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 68 | 66 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 69 | 63 67 68 | divcan3d | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) | 
						
							| 70 | 59 69 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) | 
						
							| 71 | 70 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ↔  𝑃  ∥  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 72 | 53 71 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) |