| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem34.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem34.a | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem34.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem34.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem34.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem34.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem34.h | ⊢ 𝐻  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem34.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | etransclem30 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) )  ·  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 1 2 | dvdmsscn | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 11 | 8 6 | etransclem16 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  ∈  Fin ) | 
						
							| 12 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑋  ⊆  ℂ ) | 
						
							| 13 | 6 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 14 | 13 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 16 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 17 |  | fzssnn0 | ⊢ ( 0 ... 𝑁 )  ⊆  ℕ0 | 
						
							| 18 |  | ssrab2 | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑁 }  ⊆  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 20 | 8 6 | etransclem12 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 𝐶 ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 22 | 19 21 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 23 | 18 22 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 24 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 27 | 17 26 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 28 | 27 | faccld | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑘 ) )  ∈  ℕ ) | 
						
							| 29 | 28 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 30 | 16 29 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 31 | 28 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 32 | 16 29 31 | fprodn0 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) )  ≠  0 ) | 
						
							| 33 | 15 30 32 | divcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 34 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 36 | 12 33 35 | constcncfg | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 37 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 38 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 39 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 40 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 41 | 7 40 | eqtri | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 43 | 37 38 39 41 42 27 | etransclem20 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 44 | 43 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 45 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 46 | 44 45 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑥  ∈  𝑋  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 47 | 43 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) | 
						
							| 48 | 37 38 39 41 42 27 | etransclem22 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 49 | 47 48 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 50 | 12 16 46 49 | fprodcncf | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 51 | 36 50 | mulcncf | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) )  ·  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 52 | 10 11 51 | fsumcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) )  ·  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 53 | 9 52 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ∈  ( 𝑋 –cn→ ℂ ) ) |