| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem34.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem34.a |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem34.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem34.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem34.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) | 
						
							| 6 |  | etransclem34.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | etransclem34.h |  |-  H = ( k e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 8 |  | etransclem34.c |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = n } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | etransclem30 |  |-  ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) x. prod_ k e. ( 0 ... M ) ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) ) ) | 
						
							| 10 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 11 | 8 6 | etransclem16 |  |-  ( ph -> ( C ` N ) e. Fin ) | 
						
							| 12 | 10 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> X C_ CC ) | 
						
							| 13 | 6 | faccld |  |-  ( ph -> ( ! ` N ) e. NN ) | 
						
							| 14 | 13 | nncnd |  |-  ( ph -> ( ! ` N ) e. CC ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ! ` N ) e. CC ) | 
						
							| 16 |  | fzfid |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 17 |  | fzssnn0 |  |-  ( 0 ... N ) C_ NN0 | 
						
							| 18 |  | ssrab2 |  |-  { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = N } C_ ( ( 0 ... N ) ^m ( 0 ... M ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. ( C ` N ) ) | 
						
							| 20 | 8 6 | etransclem12 |  |-  ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = N } ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = N } ) | 
						
							| 22 | 19 21 | eleqtrd |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = N } ) | 
						
							| 23 | 18 22 | sselid |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) | 
						
							| 24 |  | elmapi |  |-  ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 26 | 25 | ffvelcdmda |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ( 0 ... N ) ) | 
						
							| 27 | 17 26 | sselid |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. NN0 ) | 
						
							| 28 | 27 | faccld |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ! ` ( c ` k ) ) e. NN ) | 
						
							| 29 | 28 | nncnd |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ! ` ( c ` k ) ) e. CC ) | 
						
							| 30 | 16 29 | fprodcl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) e. CC ) | 
						
							| 31 | 28 | nnne0d |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ! ` ( c ` k ) ) =/= 0 ) | 
						
							| 32 | 16 29 31 | fprodn0 |  |-  ( ( ph /\ c e. ( C ` N ) ) -> prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) =/= 0 ) | 
						
							| 33 | 15 30 32 | divcld |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) e. CC ) | 
						
							| 34 |  | ssid |  |-  CC C_ CC | 
						
							| 35 | 34 | a1i |  |-  ( ( ph /\ c e. ( C ` N ) ) -> CC C_ CC ) | 
						
							| 36 | 12 33 35 | constcncfg |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( x e. X |-> ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 37 | 1 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> S e. { RR , CC } ) | 
						
							| 38 | 2 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 39 | 3 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 40 |  | etransclem5 |  |-  ( k e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 41 | 7 40 | eqtri |  |-  H = ( j e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> k e. ( 0 ... M ) ) | 
						
							| 43 | 37 38 39 41 42 27 | etransclem20 |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) : X --> CC ) | 
						
							| 44 | 43 | 3adant2 |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ x e. X /\ k e. ( 0 ... M ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) : X --> CC ) | 
						
							| 45 |  | simp2 |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ x e. X /\ k e. ( 0 ... M ) ) -> x e. X ) | 
						
							| 46 | 44 45 | ffvelcdmd |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ x e. X /\ k e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) e. CC ) | 
						
							| 47 | 43 | feqmptd |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) = ( x e. X |-> ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) ) | 
						
							| 48 | 37 38 39 41 42 27 | etransclem22 |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) e. ( X -cn-> CC ) ) | 
						
							| 49 | 47 48 | eqeltrrd |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ k e. ( 0 ... M ) ) -> ( x e. X |-> ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 50 | 12 16 46 49 | fprodcncf |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( x e. X |-> prod_ k e. ( 0 ... M ) ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 51 | 36 50 | mulcncf |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( x e. X |-> ( ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) x. prod_ k e. ( 0 ... M ) ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 52 | 10 11 51 | fsumcncf |  |-  ( ph -> ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) x. prod_ k e. ( 0 ... M ) ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 53 | 9 52 | eqeltrd |  |-  ( ph -> ( ( S Dn F ) ` N ) e. ( X -cn-> CC ) ) |