| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem34.s |  | 
						
							| 2 |  | etransclem34.a |  | 
						
							| 3 |  | etransclem34.p |  | 
						
							| 4 |  | etransclem34.m |  | 
						
							| 5 |  | etransclem34.f |  | 
						
							| 6 |  | etransclem34.n |  | 
						
							| 7 |  | etransclem34.h |  | 
						
							| 8 |  | etransclem34.c |  | 
						
							| 9 | 1 2 3 4 5 6 7 8 | etransclem30 |  | 
						
							| 10 | 1 2 | dvdmsscn |  | 
						
							| 11 | 8 6 | etransclem16 |  | 
						
							| 12 | 10 | adantr |  | 
						
							| 13 | 6 | faccld |  | 
						
							| 14 | 13 | nncnd |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | fzfid |  | 
						
							| 17 |  | fzssnn0 |  | 
						
							| 18 |  | ssrab2 |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 8 6 | etransclem12 |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 19 21 | eleqtrd |  | 
						
							| 23 | 18 22 | sselid |  | 
						
							| 24 |  | elmapi |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | ffvelcdmda |  | 
						
							| 27 | 17 26 | sselid |  | 
						
							| 28 | 27 | faccld |  | 
						
							| 29 | 28 | nncnd |  | 
						
							| 30 | 16 29 | fprodcl |  | 
						
							| 31 | 28 | nnne0d |  | 
						
							| 32 | 16 29 31 | fprodn0 |  | 
						
							| 33 | 15 30 32 | divcld |  | 
						
							| 34 |  | ssid |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 | 12 33 35 | constcncfg |  | 
						
							| 37 | 1 | ad2antrr |  | 
						
							| 38 | 2 | ad2antrr |  | 
						
							| 39 | 3 | ad2antrr |  | 
						
							| 40 |  | etransclem5 |  | 
						
							| 41 | 7 40 | eqtri |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 37 38 39 41 42 27 | etransclem20 |  | 
						
							| 44 | 43 | 3adant2 |  | 
						
							| 45 |  | simp2 |  | 
						
							| 46 | 44 45 | ffvelcdmd |  | 
						
							| 47 | 43 | feqmptd |  | 
						
							| 48 | 37 38 39 41 42 27 | etransclem22 |  | 
						
							| 49 | 47 48 | eqeltrrd |  | 
						
							| 50 | 12 16 46 49 | fprodcncf |  | 
						
							| 51 | 36 50 | mulcncf |  | 
						
							| 52 | 10 11 51 | fsumcncf |  | 
						
							| 53 | 9 52 | eqeltrd |  |