Metamath Proof Explorer


Theorem mulcncf

Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses mulcncf.1 φxXA:Xcn
mulcncf.2 φxXB:Xcn
Assertion mulcncf φxXAB:Xcn

Proof

Step Hyp Ref Expression
1 mulcncf.1 φxXA:Xcn
2 mulcncf.2 φxXB:Xcn
3 eqid TopOpenfld=TopOpenfld
4 3 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
5 4 a1i φ×TopOpenfld×tTopOpenfldCnTopOpenfld
6 3 5 1 2 cncfmpt2f φxXAB:Xcn