| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcncf.1 |
|
| 2 |
|
divcncf.2 |
|
| 3 |
|
cncff |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
fvmptelcdm |
|
| 6 |
|
cncff |
|
| 7 |
2 6
|
syl |
|
| 8 |
7
|
fvmptelcdm |
|
| 9 |
8
|
eldifad |
|
| 10 |
|
eldifsni |
|
| 11 |
8 10
|
syl |
|
| 12 |
5 9 11
|
divrecd |
|
| 13 |
12
|
mpteq2dva |
|
| 14 |
8
|
ralrimiva |
|
| 15 |
|
eqidd |
|
| 16 |
|
eqidd |
|
| 17 |
14 15 16
|
fmptcos |
|
| 18 |
|
csbov2g |
|
| 19 |
9 18
|
syl |
|
| 20 |
|
csbvarg |
|
| 21 |
9 20
|
syl |
|
| 22 |
21
|
oveq2d |
|
| 23 |
19 22
|
eqtrd |
|
| 24 |
23
|
mpteq2dva |
|
| 25 |
17 24
|
eqtr2d |
|
| 26 |
|
ax-1cn |
|
| 27 |
|
eqid |
|
| 28 |
27
|
cdivcncf |
|
| 29 |
26 28
|
mp1i |
|
| 30 |
2 29
|
cncfco |
|
| 31 |
25 30
|
eqeltrd |
|
| 32 |
1 31
|
mulcncf |
|
| 33 |
13 32
|
eqeltrd |
|