Metamath Proof Explorer


Theorem etransclem12

Description: C applied to N . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem12.1 C=n0c0n0M|j=0Mcj=n
etransclem12.2 φN0
Assertion etransclem12 φCN=c0N0M|j=0Mcj=N

Proof

Step Hyp Ref Expression
1 etransclem12.1 C=n0c0n0M|j=0Mcj=n
2 etransclem12.2 φN0
3 oveq2 n=N0n=0N
4 3 oveq1d n=N0n0M=0N0M
5 eqeq2 n=Nj=0Mcj=nj=0Mcj=N
6 4 5 rabeqbidv n=Nc0n0M|j=0Mcj=n=c0N0M|j=0Mcj=N
7 ovex 0N0MV
8 7 rabex c0N0M|j=0Mcj=NV
9 8 a1i φc0N0M|j=0Mcj=NV
10 1 6 2 9 fvmptd3 φCN=c0N0M|j=0Mcj=N