| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem39.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | etransclem39.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | etransclem39.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 4 |  | etransclem39.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 5 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 6 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 8 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 9 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 10 | 8 9 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 14 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 16 | 7 11 12 13 3 15 | etransclem33 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 19 | 17 18 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 20 | 5 19 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 21 | 20 4 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℂ ) |