| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem33.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem33.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem33.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem33.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem33.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem33.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑚  =  𝑁  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑚  =  𝑁  →  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  =  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑚  =  𝑁  →  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚  ↔  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 ) ) | 
						
							| 11 | 9 10 | rabeqbidv | ⊢ ( 𝑚  =  𝑁  →  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 }  =  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  =  𝑁 )  →  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 }  =  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 13 |  | ovex | ⊢ ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ∈  V ) | 
						
							| 16 | 7 12 6 15 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  =  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 17 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 18 |  | fzfi | ⊢ ( 0 ... 𝑀 )  ∈  Fin | 
						
							| 19 |  | mapfi | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  ( 0 ... 𝑀 )  ∈  Fin )  →  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin ) | 
						
							| 20 | 17 18 19 | mp2an | ⊢ ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin | 
						
							| 21 |  | ssrab2 | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ⊆  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) | 
						
							| 22 |  | ssfi | ⊢ ( ( ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin  ∧  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ⊆  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) )  →  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ∈  Fin ) | 
						
							| 23 | 20 21 22 | mp2an | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 }  ∈  Fin | 
						
							| 24 | 16 23 | eqeltrdi | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin ) | 
						
							| 26 | 6 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 29 | 18 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ) | 
						
							| 31 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  =  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 32 | 30 31 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  { 𝑑  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑁 } ) | 
						
							| 33 | 21 32 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 34 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 36 | 35 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 37 | 36 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 38 |  | elfznn0 | ⊢ ( ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 40 | 39 | faccld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 41 | 40 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 42 | 29 41 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 43 | 40 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 44 | 29 41 43 | fprodn0 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 45 | 28 42 44 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 46 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 47 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 48 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 49 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑤  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑧  ∈  𝑋  ↦  ( ( 𝑧  −  𝑤 ) ↑ if ( 𝑤  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 51 | 46 47 48 49 50 39 | etransclem20 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 52 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 53 | 51 52 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 54 | 29 53 | fprodcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 55 | 45 54 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 56 | 25 55 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) | 
						
							| 58 | 56 57 | fmptd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 59 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 60 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 61 | 1 2 3 4 5 6 59 60 | etransclem30 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 62 | 61 | feq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) : 𝑋 ⟶ ℂ  ↔  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 63 | 58 62 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |