Metamath Proof Explorer


Theorem etransclem33

Description: F is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem33.s φ S
etransclem33.x φ X TopOpen fld 𝑡 S
etransclem33.p φ P
etransclem33.m φ M 0
etransclem33.f F = x X x P 1 j = 1 M x j P
etransclem33.n φ N 0
Assertion etransclem33 φ S D n F N : X

Proof

Step Hyp Ref Expression
1 etransclem33.s φ S
2 etransclem33.x φ X TopOpen fld 𝑡 S
3 etransclem33.p φ P
4 etransclem33.m φ M 0
5 etransclem33.f F = x X x P 1 j = 1 M x j P
6 etransclem33.n φ N 0
7 eqidd φ m 0 d 0 m 0 M | k = 0 M d k = m = m 0 d 0 m 0 M | k = 0 M d k = m
8 oveq2 m = N 0 m = 0 N
9 8 oveq1d m = N 0 m 0 M = 0 N 0 M
10 eqeq2 m = N k = 0 M d k = m k = 0 M d k = N
11 9 10 rabeqbidv m = N d 0 m 0 M | k = 0 M d k = m = d 0 N 0 M | k = 0 M d k = N
12 11 adantl φ m = N d 0 m 0 M | k = 0 M d k = m = d 0 N 0 M | k = 0 M d k = N
13 ovex 0 N 0 M V
14 13 rabex d 0 N 0 M | k = 0 M d k = N V
15 14 a1i φ d 0 N 0 M | k = 0 M d k = N V
16 7 12 6 15 fvmptd φ m 0 d 0 m 0 M | k = 0 M d k = m N = d 0 N 0 M | k = 0 M d k = N
17 fzfi 0 N Fin
18 fzfi 0 M Fin
19 mapfi 0 N Fin 0 M Fin 0 N 0 M Fin
20 17 18 19 mp2an 0 N 0 M Fin
21 ssrab2 d 0 N 0 M | k = 0 M d k = N 0 N 0 M
22 ssfi 0 N 0 M Fin d 0 N 0 M | k = 0 M d k = N 0 N 0 M d 0 N 0 M | k = 0 M d k = N Fin
23 20 21 22 mp2an d 0 N 0 M | k = 0 M d k = N Fin
24 16 23 eqeltrdi φ m 0 d 0 m 0 M | k = 0 M d k = m N Fin
25 24 adantr φ x X m 0 d 0 m 0 M | k = 0 M d k = m N Fin
26 6 faccld φ N !
27 26 nncnd φ N !
28 27 ad2antrr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N !
29 18 a1i φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N 0 M Fin
30 simpr φ c m 0 d 0 m 0 M | k = 0 M d k = m N c m 0 d 0 m 0 M | k = 0 M d k = m N
31 16 adantr φ c m 0 d 0 m 0 M | k = 0 M d k = m N m 0 d 0 m 0 M | k = 0 M d k = m N = d 0 N 0 M | k = 0 M d k = N
32 30 31 eleqtrd φ c m 0 d 0 m 0 M | k = 0 M d k = m N c d 0 N 0 M | k = 0 M d k = N
33 21 32 sseldi φ c m 0 d 0 m 0 M | k = 0 M d k = m N c 0 N 0 M
34 elmapi c 0 N 0 M c : 0 M 0 N
35 33 34 syl φ c m 0 d 0 m 0 M | k = 0 M d k = m N c : 0 M 0 N
36 35 ffvelrnda φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j 0 N
37 36 adantllr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j 0 N
38 elfznn0 c j 0 N c j 0
39 37 38 syl φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j 0
40 39 faccld φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j !
41 40 nncnd φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j !
42 29 41 fprodcl φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M c j !
43 40 nnne0d φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j ! 0
44 29 41 43 fprodn0 φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M c j ! 0
45 28 42 44 divcld φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j !
46 1 ad3antrrr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M S
47 2 ad3antrrr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M X TopOpen fld 𝑡 S
48 3 ad3antrrr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M P
49 etransclem5 k 0 M y X y k if k = 0 P 1 P = w 0 M z X z w if w = 0 P 1 P
50 simpr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M j 0 M
51 46 47 48 49 50 39 etransclem20 φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j : X
52 simpllr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M x X
53 51 52 ffvelrnd φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
54 29 53 fprodcl φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
55 45 54 mulcld φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
56 25 55 fsumcl φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
57 eqid x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x = x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
58 56 57 fmptd φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x : X
59 etransclem5 k 0 M y X y k if k = 0 P 1 P = j 0 M x X x j if j = 0 P 1 P
60 etransclem11 m 0 d 0 m 0 M | k = 0 M d k = m = n 0 c 0 n 0 M | j = 0 M c j = n
61 1 2 3 4 5 6 59 60 etransclem30 φ S D n F N = x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x
62 61 feq1d φ S D n F N : X x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n k 0 M y X y k if k = 0 P 1 P j c j x : X
63 58 62 mpbird φ S D n F N : X