| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem46.q | ⊢ ( 𝜑  →  𝑄  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 2 |  | etransclem46.qe0 | ⊢ ( 𝜑  →  ( 𝑄 ‘ e )  =  0 ) | 
						
							| 3 |  | etransclem46.a | ⊢ 𝐴  =  ( coeff ‘ 𝑄 ) | 
						
							| 4 |  | etransclem46.m | ⊢ 𝑀  =  ( deg ‘ 𝑄 ) | 
						
							| 5 |  | etransclem46.rex | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ ) | 
						
							| 6 |  | etransclem46.s | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 7 |  | etransclem46.x | ⊢ ( 𝜑  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 8 |  | etransclem46.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 9 |  | etransclem46.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 10 |  | etransclem46.l | ⊢ 𝐿  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) | 
						
							| 11 |  | etransclem46.r | ⊢ 𝑅  =  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) | 
						
							| 12 |  | etransclem46.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 13 |  | etransclem46.h | ⊢ 𝑂  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 14 | 10 | a1i | ⊢ ( 𝜑  →  𝐿  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) ) | 
						
							| 15 | 13 | oveq2i | ⊢ ( ℝ  D  𝑂 )  =  ( ℝ  D  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  𝑂 )  =  ( ℝ  D  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 18 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 19 | 18 | recni | ⊢ e  ∈  ℂ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑥  ∈  ℝ  →  e  ∈  ℂ ) | 
						
							| 21 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 22 | 21 | negcld | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℂ ) | 
						
							| 23 | 20 22 | cxpcld | ⊢ ( 𝑥  ∈  ℝ  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 26 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 27 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 28 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 29 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 30 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 31 | 1 | eldifad | ⊢ ( 𝜑  →  𝑄  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 32 |  | dgrcl | ⊢ ( 𝑄  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 34 | 4 33 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 37 | 28 29 30 35 9 36 | etransclem33 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 38 | 27 37 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 40 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 41 | 39 40 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 42 | 26 41 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 43 | 12 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  ∈  ℂ )  →  ( 𝐺 ‘ 𝑥 )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 44 | 25 42 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 45 | 44 42 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 46 | 24 45 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 47 | 46 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 48 | 47 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ℝ )  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 49 | 6 7 | dvdmsscn | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 50 | 49 8 9 | etransclem8 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 51 | 50 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 52 | 24 51 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 54 | 53 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 55 | 54 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ℝ )  →  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 56 | 18 | a1i | ⊢ ( 𝑥  ∈  ℝ  →  e  ∈  ℝ ) | 
						
							| 57 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 58 |  | epos | ⊢ 0  <  e | 
						
							| 59 | 57 18 58 | ltleii | ⊢ 0  ≤  e | 
						
							| 60 | 59 | a1i | ⊢ ( 𝑥  ∈  ℝ  →  0  ≤  e ) | 
						
							| 61 |  | renegcl | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ ) | 
						
							| 62 | 56 60 61 | recxpcld | ⊢ ( 𝑥  ∈  ℝ  →  ( e ↑𝑐 - 𝑥 )  ∈  ℝ ) | 
						
							| 63 | 62 | renegcld | ⊢ ( 𝑥  ∈  ℝ  →  - ( e ↑𝑐 - 𝑥 )  ∈  ℝ ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  - ( e ↑𝑐 - 𝑥 )  ∈  ℝ ) | 
						
							| 65 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 66 | 65 | a1i | ⊢ ( ⊤  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 67 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 68 | 67 | a1i | ⊢ ( ⊤  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 69 | 22 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  - 𝑥  ∈  ℂ ) | 
						
							| 70 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 71 | 70 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  - 1  ∈  ℝ ) | 
						
							| 72 | 19 | a1i | ⊢ ( 𝑦  ∈  ℂ  →  e  ∈  ℂ ) | 
						
							| 73 |  | id | ⊢ ( 𝑦  ∈  ℂ  →  𝑦  ∈  ℂ ) | 
						
							| 74 | 72 73 | cxpcld | ⊢ ( 𝑦  ∈  ℂ  →  ( e ↑𝑐 𝑦 )  ∈  ℂ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℂ )  →  ( e ↑𝑐 𝑦 )  ∈  ℂ ) | 
						
							| 76 | 21 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 77 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 78 | 66 | dvmptid | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  𝑥 ) )  =  ( 𝑥  ∈  ℝ  ↦  1 ) ) | 
						
							| 79 | 66 76 77 78 | dvmptneg | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  - 𝑥 ) )  =  ( 𝑥  ∈  ℝ  ↦  - 1 ) ) | 
						
							| 80 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 81 |  | dvcxp2 | ⊢ ( e  ∈  ℝ+  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( ( log ‘ e )  ·  ( e ↑𝑐 𝑦 ) ) ) ) | 
						
							| 82 | 80 81 | ax-mp | ⊢ ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( ( log ‘ e )  ·  ( e ↑𝑐 𝑦 ) ) ) | 
						
							| 83 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 84 | 83 | oveq1i | ⊢ ( ( log ‘ e )  ·  ( e ↑𝑐 𝑦 ) )  =  ( 1  ·  ( e ↑𝑐 𝑦 ) ) | 
						
							| 85 | 74 | mullidd | ⊢ ( 𝑦  ∈  ℂ  →  ( 1  ·  ( e ↑𝑐 𝑦 ) )  =  ( e ↑𝑐 𝑦 ) ) | 
						
							| 86 | 84 85 | eqtrid | ⊢ ( 𝑦  ∈  ℂ  →  ( ( log ‘ e )  ·  ( e ↑𝑐 𝑦 ) )  =  ( e ↑𝑐 𝑦 ) ) | 
						
							| 87 | 86 | mpteq2ia | ⊢ ( 𝑦  ∈  ℂ  ↦  ( ( log ‘ e )  ·  ( e ↑𝑐 𝑦 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) | 
						
							| 88 | 82 87 | eqtri | ⊢ ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) | 
						
							| 89 | 88 | a1i | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ) | 
						
							| 90 |  | oveq2 | ⊢ ( 𝑦  =  - 𝑥  →  ( e ↑𝑐 𝑦 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 91 | 66 68 69 71 75 75 79 89 90 90 | dvmptco | ⊢ ( ⊤  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( e ↑𝑐 - 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  - 1 ) ) ) | 
						
							| 92 | 91 | mptru | ⊢ ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( e ↑𝑐 - 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  - 1 ) ) | 
						
							| 93 | 70 | a1i | ⊢ ( 𝑥  ∈  ℝ  →  - 1  ∈  ℝ ) | 
						
							| 94 | 93 | recnd | ⊢ ( 𝑥  ∈  ℝ  →  - 1  ∈  ℂ ) | 
						
							| 95 | 23 94 | mulcomd | ⊢ ( 𝑥  ∈  ℝ  →  ( ( e ↑𝑐 - 𝑥 )  ·  - 1 )  =  ( - 1  ·  ( e ↑𝑐 - 𝑥 ) ) ) | 
						
							| 96 | 23 | mulm1d | ⊢ ( 𝑥  ∈  ℝ  →  ( - 1  ·  ( e ↑𝑐 - 𝑥 ) )  =  - ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 97 | 95 96 | eqtrd | ⊢ ( 𝑥  ∈  ℝ  →  ( ( e ↑𝑐 - 𝑥 )  ·  - 1 )  =  - ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 98 | 97 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  - 1 ) )  =  ( 𝑥  ∈  ℝ  ↦  - ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 99 | 92 98 | eqtri | ⊢ ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( e ↑𝑐 - 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 100 | 99 | a1i | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( e ↑𝑐 - 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - ( e ↑𝑐 - 𝑥 ) ) ) | 
						
							| 101 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 102 |  | peano2nn0 | ⊢ ( 𝑖  ∈  ℕ0  →  ( 𝑖  +  1 )  ∈  ℕ0 ) | 
						
							| 103 | 101 102 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( 𝑖  +  1 )  ∈  ℕ0 ) | 
						
							| 104 |  | ovex | ⊢ ( 𝑖  +  1 )  ∈  V | 
						
							| 105 |  | eleq1 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑗  ∈  ℕ0  ↔  ( 𝑖  +  1 )  ∈  ℕ0 ) ) | 
						
							| 106 | 105 | anbi2d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  ↔  ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ℕ0 ) ) ) | 
						
							| 107 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 108 | 107 | feq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) ) | 
						
							| 109 | 106 108 | imbi12d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ )  ↔  ( ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) ) ) | 
						
							| 110 |  | eleq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ℕ0  ↔  𝑗  ∈  ℕ0 ) ) | 
						
							| 111 | 110 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ↔  ( 𝜑  ∧  𝑗  ∈  ℕ0 ) ) ) | 
						
							| 112 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 113 | 112 | feq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ  ↔  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) | 
						
							| 114 | 111 113 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) ) | 
						
							| 115 | 114 37 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) | 
						
							| 116 | 104 109 115 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝑖  +  1 )  ∈  ℕ0 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 117 | 103 116 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 118 | 117 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) : ℝ ⟶ ℂ ) | 
						
							| 119 | 118 40 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 120 | 26 119 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 121 | 8 34 9 12 | etransclem39 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 122 | 121 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 123 | 122 | eqcomd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) )  =  𝐺 ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ℝ  D  𝐺 ) ) | 
						
							| 125 |  | nfcv | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 126 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 127 | 126 37 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 128 | 125 50 127 12 | etransclem2 | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 129 | 124 128 | eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 130 | 6 24 64 100 45 120 129 | dvmptmul | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ·  ( e ↑𝑐 - 𝑥 ) ) ) ) ) | 
						
							| 131 | 120 24 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ·  ( e ↑𝑐 - 𝑥 ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) | 
						
							| 132 | 131 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ·  ( e ↑𝑐 - 𝑥 ) ) )  =  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 133 | 24 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  - ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 134 | 133 45 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 135 | 24 120 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 136 | 134 135 | addcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) )  =  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 137 | 135 46 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  −  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 138 | 24 45 | mulneg1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 140 | 24 120 45 | subdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  −  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 141 | 137 139 140 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 142 | 44 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 143 | 26 119 41 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )  =  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) | 
						
							| 145 | 144 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 146 | 107 | fveq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 147 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 148 | 147 | fveq1d | ⊢ ( 𝑗  =  0  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) | 
						
							| 149 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑅  +  1 )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ) | 
						
							| 150 | 149 | fveq1d | ⊢ ( 𝑗  =  ( 𝑅  +  1 )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 ) ) | 
						
							| 151 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 152 | 34 151 | nn0mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℕ0 ) | 
						
							| 153 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 154 | 8 153 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 155 | 152 154 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  ∈  ℕ0 ) | 
						
							| 156 | 11 155 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑅  ∈  ℕ0 ) | 
						
							| 158 | 157 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑅  ∈  ℤ ) | 
						
							| 159 |  | peano2nn0 | ⊢ ( 𝑅  ∈  ℕ0  →  ( 𝑅  +  1 )  ∈  ℕ0 ) | 
						
							| 160 | 156 159 | syl | ⊢ ( 𝜑  →  ( 𝑅  +  1 )  ∈  ℕ0 ) | 
						
							| 161 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 162 | 160 161 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑅  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑅  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 164 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 165 | 164 115 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) | 
						
							| 166 | 165 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) | 
						
							| 167 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 168 | 166 167 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  ( 0 ... ( 𝑅  +  1 ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑗 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 169 | 145 146 148 150 158 163 168 | telfsum2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )  =  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) | 
						
							| 170 | 142 143 169 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) ) | 
						
							| 172 | 156 | nn0red | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 173 | 172 | ltp1d | ⊢ ( 𝜑  →  𝑅  <  ( 𝑅  +  1 ) ) | 
						
							| 174 | 11 173 | eqbrtrrid | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  <  ( 𝑅  +  1 ) ) | 
						
							| 175 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 176 | 6 7 8 34 9 160 174 175 | etransclem32 | ⊢ ( 𝜑  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 177 | 176 | fveq1d | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ℝ  ↦  0 ) ‘ 𝑥 ) ) | 
						
							| 178 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  0 )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 179 | 178 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( 𝑥  ∈  ℝ  ↦  0 ) ‘ 𝑥 )  =  0 ) | 
						
							| 180 | 57 179 | mpan2 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝑥  ∈  ℝ  ↦  0 ) ‘ 𝑥 )  =  0 ) | 
						
							| 181 | 177 180 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 182 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 183 | 182 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 184 | 6 5 | ssexd | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 185 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  ℝ  ∈  V )  ∧  ( 𝐹 : ℝ ⟶ ℂ  ∧  ℝ  ⊆  ℝ ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 186 | 183 184 50 5 185 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 187 |  | dvn0 | ⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  ℝ ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 188 | 49 186 187 | syl2anc | ⊢ ( 𝜑  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 189 | 188 | fveq1d | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 191 | 181 190 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) )  =  ( 0  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 192 |  | df-neg | ⊢ - ( 𝐹 ‘ 𝑥 )  =  ( 0  −  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 193 | 191 192 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) )  =  - ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 194 | 193 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑅  +  1 ) ) ‘ 𝑥 )  −  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 195 | 141 171 194 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( e ↑𝑐 - 𝑥 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 ) )  +  ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 196 | 132 136 195 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ·  ( e ↑𝑐 - 𝑥 ) ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 197 | 196 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( ( - ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  +  ( Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑖  +  1 ) ) ‘ 𝑥 )  ·  ( e ↑𝑐 - 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 198 | 24 51 | mulneg2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) )  =  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 199 | 198 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  - ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 200 | 130 197 199 | 3eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 201 | 6 46 53 200 | dvmptneg | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ  ↦  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 203 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℝ ) | 
						
							| 204 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 205 | 204 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 206 | 205 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 207 | 203 206 | iccssred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 [,] 𝑗 )  ⊆  ℝ ) | 
						
							| 208 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 209 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 210 |  | 0red | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 211 |  | iccntr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 0 [,] 𝑗 ) )  =  ( 0 (,) 𝑗 ) ) | 
						
							| 212 | 210 205 211 | syl2anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 0 [,] 𝑗 ) )  =  ( 0 (,) 𝑗 ) ) | 
						
							| 213 | 212 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 0 [,] 𝑗 ) )  =  ( 0 (,) 𝑗 ) ) | 
						
							| 214 | 17 48 55 202 207 208 209 213 | dvmptres2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 215 | 19 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  e  ∈  ℂ ) | 
						
							| 216 |  | elioore | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  𝑥  ∈  ℝ ) | 
						
							| 217 | 216 | recnd | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  𝑥  ∈  ℂ ) | 
						
							| 218 | 217 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 219 | 218 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 220 | 215 219 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 221 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 222 | 216 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 223 | 221 222 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 224 | 220 223 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 225 | 224 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 226 | 225 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 227 | 226 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  - - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 228 | 16 214 227 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  𝑂 )  =  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 229 | 228 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ℝ  D  𝑂 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) | 
						
							| 230 | 229 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( ℝ  D  𝑂 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) | 
						
							| 231 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ( 0 (,) 𝑗 ) ) | 
						
							| 232 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 233 | 232 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ )  →  ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 234 | 231 224 233 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 235 | 234 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 236 | 230 235 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( ( ℝ  D  𝑂 ) ‘ 𝑥 ) ) | 
						
							| 237 | 236 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥  =  ∫ ( 0 (,) 𝑗 ) ( ( ℝ  D  𝑂 ) ‘ 𝑥 )  d 𝑥 ) | 
						
							| 238 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  ≤  𝑗 ) | 
						
							| 239 | 238 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  𝑗 ) | 
						
							| 240 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 241 |  | eqidd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  =  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ) | 
						
							| 242 | 90 | adantl | ⊢ ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  ∧  𝑦  =  - 𝑥 )  →  ( e ↑𝑐 𝑦 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 243 | 210 205 | iccssred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 0 [,] 𝑗 )  ⊆  ℝ ) | 
						
							| 244 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 245 | 243 244 | sstrdi | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 0 [,] 𝑗 )  ⊆  ℂ ) | 
						
							| 246 | 245 | sselda | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 247 | 246 | negcld | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 248 | 19 | a1i | ⊢ ( 𝑥  ∈  ℂ  →  e  ∈  ℂ ) | 
						
							| 249 |  | negcl | ⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ ) | 
						
							| 250 | 248 249 | cxpcld | ⊢ ( 𝑥  ∈  ℂ  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 251 | 246 250 | syl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 252 | 241 242 247 251 | fvmptd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 253 | 252 | eqcomd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  =  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) | 
						
							| 254 | 253 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  =  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) | 
						
							| 255 | 254 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( e ↑𝑐 - 𝑥 ) )  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ) | 
						
							| 256 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 257 | 256 | a1i | ⊢ ( e  ∈  ℝ+  →  -∞  ∈  ℝ* ) | 
						
							| 258 |  | 0red | ⊢ ( e  ∈  ℝ+  →  0  ∈  ℝ ) | 
						
							| 259 |  | rpxr | ⊢ ( e  ∈  ℝ+  →  e  ∈  ℝ* ) | 
						
							| 260 |  | rpgt0 | ⊢ ( e  ∈  ℝ+  →  0  <  e ) | 
						
							| 261 | 257 258 259 260 | gtnelioc | ⊢ ( e  ∈  ℝ+  →  ¬  e  ∈  ( -∞ (,] 0 ) ) | 
						
							| 262 | 80 261 | ax-mp | ⊢ ¬  e  ∈  ( -∞ (,] 0 ) | 
						
							| 263 |  | eldif | ⊢ ( e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↔  ( e  ∈  ℂ  ∧  ¬  e  ∈  ( -∞ (,] 0 ) ) ) | 
						
							| 264 | 19 262 263 | mpbir2an | ⊢ e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 265 |  | cxpcncf2 | ⊢ ( e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 266 | 264 265 | mp1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 267 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - 𝑥 )  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - 𝑥 ) | 
						
							| 268 | 267 | negcncf | ⊢ ( ( 0 [,] 𝑗 )  ⊆  ℂ  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - 𝑥 )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 269 | 245 268 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - 𝑥 )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 270 | 269 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - 𝑥 )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 271 | 266 270 | cncfmpt1f | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 272 | 255 271 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( e ↑𝑐 - 𝑥 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 273 | 244 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 274 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 275 | 34 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 276 |  | etransclem6 | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 277 | 9 276 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 278 | 243 | sselda | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 279 | 278 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 280 | 273 274 275 277 279 | etransclem13 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 281 | 280 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 282 | 245 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 [,] 𝑗 )  ⊆  ℂ ) | 
						
							| 283 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 284 | 279 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 285 | 284 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 286 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 287 | 286 | zcnd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℂ ) | 
						
							| 288 | 287 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 289 | 285 288 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  𝑘 )  ∈  ℂ ) | 
						
							| 290 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 291 | 290 153 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 292 | 151 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 293 | 291 292 | ifcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 294 | 293 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 295 | 294 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 296 | 289 295 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℂ ) | 
						
							| 297 |  | nfv | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 298 | 245 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 0 [,] 𝑗 )  ⊆  ℂ ) | 
						
							| 299 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 300 | 299 | a1i | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 301 | 298 300 | idcncfg | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  𝑥 )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 302 | 287 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 303 | 298 302 300 | constcncfg | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  𝑘 )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 304 | 301 303 | subcncf | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( 𝑥  −  𝑘 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 305 | 304 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( 𝑥  −  𝑘 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 306 | 154 151 | ifcld | ⊢ ( 𝜑  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 307 |  | expcncf | ⊢ ( if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 308 | 306 307 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 309 | 308 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 310 | 299 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 311 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  −  𝑘 )  →  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 312 | 297 305 309 310 311 | cncfcompt2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 313 | 282 283 296 312 | fprodcncf | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 314 | 281 313 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 315 | 272 314 | mulcncf | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 316 |  | ioossicc | ⊢ ( 0 (,) 𝑗 )  ⊆  ( 0 [,] 𝑗 ) | 
						
							| 317 | 316 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 (,) 𝑗 )  ⊆  ( 0 [,] 𝑗 ) ) | 
						
							| 318 | 299 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 319 | 224 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 320 | 240 315 317 318 319 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ( ( 0 (,) 𝑗 ) –cn→ ℂ ) ) | 
						
							| 321 | 228 320 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  𝑂 )  ∈  ( ( 0 (,) 𝑗 ) –cn→ ℂ ) ) | 
						
							| 322 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 323 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 324 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 325 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑥  −  𝑗 )  =  ( 𝑥  −  𝑘 ) ) | 
						
							| 326 | 325 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  =  ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 327 | 326 | cbvprodv | ⊢ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) | 
						
							| 328 | 327 | oveq2i | ⊢ ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) )  =  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) | 
						
							| 329 | 328 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 330 | 9 329 | eqtri | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 331 | 17 322 323 324 330 203 206 | etransclem18 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 ) | 
						
							| 332 | 228 331 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ℝ  D  𝑂 )  ∈  𝐿1 ) | 
						
							| 333 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 334 | 6 7 8 34 9 12 | etransclem43 | ⊢ ( 𝜑  →  𝐺  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 335 | 123 334 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 336 | 335 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ℝ  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  ( ℝ –cn→ ℂ ) ) | 
						
							| 337 | 121 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 338 | 337 279 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 [,] 𝑗 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 339 | 333 336 207 318 338 | cncfmptssg | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( 𝐺 ‘ 𝑥 ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 340 | 272 339 | mulcncf | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 341 | 340 | negcncfg | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) )  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 342 | 13 341 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑂  ∈  ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) | 
						
							| 343 | 203 206 239 321 332 342 | ftc2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( ℝ  D  𝑂 ) ‘ 𝑥 )  d 𝑥  =  ( ( 𝑂 ‘ 𝑗 )  −  ( 𝑂 ‘ 0 ) ) ) | 
						
							| 344 |  | negeq | ⊢ ( 𝑥  =  𝑗  →  - 𝑥  =  - 𝑗 ) | 
						
							| 345 | 344 | oveq2d | ⊢ ( 𝑥  =  𝑗  →  ( e ↑𝑐 - 𝑥 )  =  ( e ↑𝑐 - 𝑗 ) ) | 
						
							| 346 |  | fveq2 | ⊢ ( 𝑥  =  𝑗  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 347 | 345 346 | oveq12d | ⊢ ( 𝑥  =  𝑗  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 348 | 347 | negeqd | ⊢ ( 𝑥  =  𝑗  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 349 | 203 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℝ* ) | 
						
							| 350 | 206 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℝ* ) | 
						
							| 351 |  | ubicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑗  ∈  ℝ*  ∧  0  ≤  𝑗 )  →  𝑗  ∈  ( 0 [,] 𝑗 ) ) | 
						
							| 352 | 349 350 239 351 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 [,] 𝑗 ) ) | 
						
							| 353 | 19 | a1i | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  e  ∈  ℂ ) | 
						
							| 354 | 205 | recnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 355 | 354 | negcld | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  - 𝑗  ∈  ℂ ) | 
						
							| 356 | 353 355 | cxpcld | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑𝑐 - 𝑗 )  ∈  ℂ ) | 
						
							| 357 | 356 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( e ↑𝑐 - 𝑗 )  ∈  ℂ ) | 
						
							| 358 | 121 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝐺 : ℝ ⟶ ℂ ) | 
						
							| 359 | 358 206 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 360 | 357 359 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 361 | 360 | negcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 362 | 13 348 352 361 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑂 ‘ 𝑗 )  =  - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 363 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑂  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 364 |  | negeq | ⊢ ( 𝑥  =  0  →  - 𝑥  =  - 0 ) | 
						
							| 365 | 364 | oveq2d | ⊢ ( 𝑥  =  0  →  ( e ↑𝑐 - 𝑥 )  =  ( e ↑𝑐 - 0 ) ) | 
						
							| 366 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 367 | 366 | oveq2i | ⊢ ( e ↑𝑐 - 0 )  =  ( e ↑𝑐 0 ) | 
						
							| 368 |  | cxp0 | ⊢ ( e  ∈  ℂ  →  ( e ↑𝑐 0 )  =  1 ) | 
						
							| 369 | 19 368 | ax-mp | ⊢ ( e ↑𝑐 0 )  =  1 | 
						
							| 370 | 367 369 | eqtri | ⊢ ( e ↑𝑐 - 0 )  =  1 | 
						
							| 371 | 365 370 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( e ↑𝑐 - 𝑥 )  =  1 ) | 
						
							| 372 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 373 | 371 372 | oveq12d | ⊢ ( 𝑥  =  0  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( 1  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 374 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 375 | 121 374 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 376 | 375 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( 𝐺 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 377 | 373 376 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑥  =  0 )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 378 | 377 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  =  0 )  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  - ( 𝐺 ‘ 0 ) ) | 
						
							| 379 | 378 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  =  0 )  →  - ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  - ( 𝐺 ‘ 0 ) ) | 
						
							| 380 |  | lbicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑗  ∈  ℝ*  ∧  0  ≤  𝑗 )  →  0  ∈  ( 0 [,] 𝑗 ) ) | 
						
							| 381 | 349 350 239 380 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ( 0 [,] 𝑗 ) ) | 
						
							| 382 | 375 | negcld | ⊢ ( 𝜑  →  - ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 383 | 382 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  - ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 384 | 363 379 381 383 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑂 ‘ 0 )  =  - ( 𝐺 ‘ 0 ) ) | 
						
							| 385 | 362 384 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑂 ‘ 𝑗 )  −  ( 𝑂 ‘ 0 ) )  =  ( - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  −  - ( 𝐺 ‘ 0 ) ) ) | 
						
							| 386 | 375 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐺 ‘ 0 )  ∈  ℂ ) | 
						
							| 387 | 361 386 | subnegd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  −  - ( 𝐺 ‘ 0 ) )  =  ( - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  +  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 388 | 361 386 | addcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  +  ( 𝐺 ‘ 0 ) )  =  ( ( 𝐺 ‘ 0 )  +  - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 389 | 386 360 | negsubd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 0 )  +  - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 390 | 388 389 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( - ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  +  ( 𝐺 ‘ 0 ) )  =  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 391 | 385 387 390 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑂 ‘ 𝑗 )  −  ( 𝑂 ‘ 0 ) )  =  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 392 | 237 343 391 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥  =  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 393 | 392 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  =  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 394 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑄  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 395 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℤ ) | 
						
							| 396 | 3 | coef2 | ⊢ ( ( 𝑄  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℤ )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 397 | 394 395 396 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 398 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 399 | 398 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 400 | 397 399 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 401 | 400 | zcnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 402 | 353 354 | cxpcld | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑𝑐 𝑗 )  ∈  ℂ ) | 
						
							| 403 | 402 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( e ↑𝑐 𝑗 )  ∈  ℂ ) | 
						
							| 404 | 401 403 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ∈  ℂ ) | 
						
							| 405 | 404 386 360 | subdid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( 𝐺 ‘ 0 )  −  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 406 | 393 405 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  =  ( ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 407 | 406 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 408 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 409 | 404 386 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  ∈  ℂ ) | 
						
							| 410 | 404 360 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 411 | 408 409 410 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 412 | 2 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 𝑄 ‘ e ) ) | 
						
							| 413 | 3 4 | coeid2 | ⊢ ( ( 𝑄  ∈  ( Poly ‘ ℤ )  ∧  e  ∈  ℂ )  →  ( 𝑄 ‘ e )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑ 𝑗 ) ) ) | 
						
							| 414 | 31 19 413 | sylancl | ⊢ ( 𝜑  →  ( 𝑄 ‘ e )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑ 𝑗 ) ) ) | 
						
							| 415 |  | cxpexp | ⊢ ( ( e  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( e ↑𝑐 𝑗 )  =  ( e ↑ 𝑗 ) ) | 
						
							| 416 | 353 398 415 | syl2anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑𝑐 𝑗 )  =  ( e ↑ 𝑗 ) ) | 
						
							| 417 | 416 | eqcomd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑ 𝑗 )  =  ( e ↑𝑐 𝑗 ) ) | 
						
							| 418 | 417 | oveq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑ 𝑗 ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) ) | 
						
							| 419 | 418 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑ 𝑗 ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) ) | 
						
							| 420 | 419 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑ 𝑗 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) ) | 
						
							| 421 | 412 414 420 | 3eqtrd | ⊢ ( 𝜑  →  0  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) ) | 
						
							| 422 | 421 | oveq1d | ⊢ ( 𝜑  →  ( 0  ·  ( 𝐺 ‘ 0 ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 423 | 375 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ( 𝐺 ‘ 0 ) )  =  0 ) | 
						
							| 424 | 408 375 404 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 425 | 422 423 424 | 3eqtr3rd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  =  0 ) | 
						
							| 426 |  | fveq2 | ⊢ ( 𝑥  =  𝑗  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 427 | 426 | sumeq2sdv | ⊢ ( 𝑥  =  𝑗  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 428 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 429 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) | 
						
							| 430 | 206 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 431 | 429 430 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 432 | 428 431 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 433 | 12 427 206 432 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑗 )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 434 | 433 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) )  =  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 435 | 434 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  =  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) | 
						
							| 436 | 357 432 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 437 | 401 403 436 | mulassd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  ( ( e ↑𝑐 𝑗 )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) ) | 
						
							| 438 | 369 | eqcomi | ⊢ 1  =  ( e ↑𝑐 0 ) | 
						
							| 439 | 438 | a1i | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  1  =  ( e ↑𝑐 0 ) ) | 
						
							| 440 | 354 | negidd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  +  - 𝑗 )  =  0 ) | 
						
							| 441 | 440 | eqcomd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  =  ( 𝑗  +  - 𝑗 ) ) | 
						
							| 442 | 441 | oveq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑𝑐 0 )  =  ( e ↑𝑐 ( 𝑗  +  - 𝑗 ) ) ) | 
						
							| 443 | 57 58 | gtneii | ⊢ e  ≠  0 | 
						
							| 444 | 443 | a1i | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  e  ≠  0 ) | 
						
							| 445 | 353 444 354 355 | cxpaddd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( e ↑𝑐 ( 𝑗  +  - 𝑗 ) )  =  ( ( e ↑𝑐 𝑗 )  ·  ( e ↑𝑐 - 𝑗 ) ) ) | 
						
							| 446 | 439 442 445 | 3eqtrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  1  =  ( ( e ↑𝑐 𝑗 )  ·  ( e ↑𝑐 - 𝑗 ) ) ) | 
						
							| 447 | 446 | oveq1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 1  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  ( ( ( e ↑𝑐 𝑗 )  ·  ( e ↑𝑐 - 𝑗 ) )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 448 | 447 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 1  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  ( ( ( e ↑𝑐 𝑗 )  ·  ( e ↑𝑐 - 𝑗 ) )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 449 | 432 | mullidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 1  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 450 | 403 357 432 | mulassd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( e ↑𝑐 𝑗 )  ·  ( e ↑𝑐 - 𝑗 ) )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  ( ( e ↑𝑐 𝑗 )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) | 
						
							| 451 | 448 449 450 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( e ↑𝑐 𝑗 )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 452 | 451 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( ( e ↑𝑐 𝑗 )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 453 | 428 401 431 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 454 | 452 453 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( ( e ↑𝑐 𝑗 )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 455 | 435 437 454 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 456 | 455 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 457 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 458 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 459 | 457 458 | op1std | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( 1st  ‘ 𝑘 )  =  𝑗 ) | 
						
							| 460 | 459 | fveq2d | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 461 | 457 458 | op2ndd | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( 2nd  ‘ 𝑘 )  =  𝑖 ) | 
						
							| 462 | 461 | fveq2d | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ) | 
						
							| 463 | 462 459 | fveq12d | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) | 
						
							| 464 | 460 463 | oveq12d | ⊢ ( 𝑘  =  〈 𝑗 ,  𝑖 〉  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) | 
						
							| 465 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 466 | 401 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 467 | 431 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 468 | 466 467 | mulcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑅 ) ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 469 | 464 408 465 468 | fsumxp | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) )  =  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 470 | 456 469 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) )  =  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 471 | 425 470 | oveq12d | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) )  =  ( 0  −  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) ) | 
						
							| 472 |  | df-neg | ⊢ - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  =  ( 0  −  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 473 | 472 | eqcomi | ⊢ ( 0  −  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) )  =  - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) | 
						
							| 474 | 473 | a1i | ⊢ ( 𝜑  →  ( 0  −  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) )  =  - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 475 | 411 471 474 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( 𝐺 ‘ 0 ) )  −  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ( ( e ↑𝑐 - 𝑗 )  ·  ( 𝐺 ‘ 𝑗 ) ) ) )  =  - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 476 | 14 407 475 | 3eqtrd | ⊢ ( 𝜑  →  𝐿  =  - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) | 
						
							| 477 | 476 | oveq1d | ⊢ ( 𝜑  →  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) |