| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem32.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem32.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem32.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem32.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem32.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem32.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem32.ngt | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  <  𝑁 ) | 
						
							| 8 |  | etransclem32.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 9 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 10 | 1 2 3 4 5 6 8 9 | etransclem30 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ) | 
						
							| 12 | 9 6 | etransclem12 | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 14 | 11 13 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 17 |  | nfre1 | ⊢ Ⅎ 𝑘 ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) | 
						
							| 18 | 17 | nfn | ⊢ Ⅎ 𝑘 ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) | 
						
							| 19 | 16 18 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 20 |  | fzssre | ⊢ ( 0 ... 𝑁 )  ⊆  ℝ | 
						
							| 21 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ↔  ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) ) | 
						
							| 22 | 21 | simplbi | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 23 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 27 | 20 26 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 29 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 30 | 3 29 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0red | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 32 | 3 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 33 | 31 32 | ifcld | ⊢ ( 𝜑  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 34 | 33 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 35 |  | ralnex | ⊢ ( ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ¬  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 )  ↔  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 36 | 35 | biimpri | ⊢ ( ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 )  →  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ¬  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 37 | 36 | r19.21bi | ⊢ ( ( ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ¬  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 38 | 37 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ¬  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 39 | 28 34 38 | nltled | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑀 )  →  ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 41 | 19 40 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 42 | 21 | simprbi | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 44 | 43 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) | 
						
							| 45 | 42 44 | eqtr3di | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  𝑁  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  𝑁  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑘  =  ℎ  →  ( 𝑐 ‘ 𝑘 )  =  ( 𝑐 ‘ ℎ ) ) | 
						
							| 48 | 47 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  Σ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) | 
						
							| 49 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 50 | 25 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ ℎ )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 51 | 20 50 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ ℎ )  ∈  ℝ ) | 
						
							| 52 | 51 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ ℎ )  ∈  ℝ ) | 
						
							| 53 | 31 32 | ifcld | ⊢ ( 𝜑  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 55 |  | eqeq1 | ⊢ ( 𝑘  =  ℎ  →  ( 𝑘  =  0  ↔  ℎ  =  0 ) ) | 
						
							| 56 | 55 | ifbid | ⊢ ( 𝑘  =  ℎ  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 57 | 47 56 | breq12d | ⊢ ( 𝑘  =  ℎ  →  ( ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ↔  ( 𝑐 ‘ ℎ )  ≤  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 58 | 57 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ ℎ )  ≤  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 59 | 58 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ ℎ )  ≤  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 60 | 49 52 54 59 | fsumle | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  Σ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ )  ≤  Σ ℎ  ∈  ( 0 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 61 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 62 | 4 61 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 63 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 64 | 30 63 | ifcld | ⊢ ( 𝜑  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 66 | 65 | nn0cnd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℂ ) | 
						
							| 67 |  | iftrue | ⊢ ( ℎ  =  0  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 68 | 62 66 67 | fsum1p | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( 0 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( ( 𝑃  −  1 )  +  Σ ℎ  ∈  ( ( 0  +  1 ) ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 69 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 70 | 69 | oveq1i | ⊢ ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 72 | 71 | sumeq1d | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( ( 0  +  1 ) ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  Σ ℎ  ∈  ( 1 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 73 |  | 0red | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 74 |  | 1red | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 75 |  | elfzelz | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  ℎ  ∈  ℤ ) | 
						
							| 76 | 75 | zred | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  ℎ  ∈  ℝ ) | 
						
							| 77 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 78 | 77 | a1i | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  0  <  1 ) | 
						
							| 79 |  | elfzle1 | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  1  ≤  ℎ ) | 
						
							| 80 | 73 74 76 78 79 | ltletrd | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  0  <  ℎ ) | 
						
							| 81 | 80 | gt0ne0d | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  ℎ  ≠  0 ) | 
						
							| 82 | 81 | neneqd | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  ¬  ℎ  =  0 ) | 
						
							| 83 | 82 | iffalsed | ⊢ ( ℎ  ∈  ( 1 ... 𝑀 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 1 ... 𝑀 ) )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 85 | 84 | sumeq2dv | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( 1 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  Σ ℎ  ∈  ( 1 ... 𝑀 ) 𝑃 ) | 
						
							| 86 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 87 | 3 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 88 |  | fsumconst | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  𝑃  ∈  ℂ )  →  Σ ℎ  ∈  ( 1 ... 𝑀 ) 𝑃  =  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  𝑃 ) ) | 
						
							| 89 | 86 87 88 | syl2anc | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( 1 ... 𝑀 ) 𝑃  =  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  𝑃 ) ) | 
						
							| 90 |  | hashfz1 | ⊢ ( 𝑀  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 ) | 
						
							| 91 | 4 90 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 1 ... 𝑀 ) )  ·  𝑃 )  =  ( 𝑀  ·  𝑃 ) ) | 
						
							| 93 | 89 92 | eqtrd | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( 1 ... 𝑀 ) 𝑃  =  ( 𝑀  ·  𝑃 ) ) | 
						
							| 94 | 72 85 93 | 3eqtrd | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( ( 0  +  1 ) ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑀  ·  𝑃 ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  +  Σ ℎ  ∈  ( ( 0  +  1 ) ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑃  −  1 )  +  ( 𝑀  ·  𝑃 ) ) ) | 
						
							| 96 | 30 | nn0cnd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 97 | 4 63 | nn0mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℕ0 ) | 
						
							| 98 | 97 | nn0cnd | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℂ ) | 
						
							| 99 | 96 98 | addcomd | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  +  ( 𝑀  ·  𝑃 ) )  =  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 100 | 68 95 99 | 3eqtrd | ⊢ ( 𝜑  →  Σ ℎ  ∈  ( 0 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 101 | 100 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  Σ ℎ  ∈  ( 0 ... 𝑀 ) if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 102 | 60 101 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  Σ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ )  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 103 | 48 102 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 104 | 46 103 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ≤  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  𝑁  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 105 | 41 104 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑁  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 106 | 97 30 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  ∈  ℕ0 ) | 
						
							| 107 | 106 | nn0red | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  ∈  ℝ ) | 
						
							| 108 | 6 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 109 | 107 108 | ltnled | ⊢ ( 𝜑  →  ( ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  <  𝑁  ↔  ¬  𝑁  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 110 | 7 109 | mpbid | ⊢ ( 𝜑  →  ¬  𝑁  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 111 | 110 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  ¬  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ¬  𝑁  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 112 | 105 111 | condan | ⊢ ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 113 | 112 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 114 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑥  ∈  𝑋 ) | 
						
							| 115 |  | nfcv | ⊢ Ⅎ 𝑗 ( 0 ... 𝑀 ) | 
						
							| 116 | 115 | nfsum1 | ⊢ Ⅎ 𝑗 Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) | 
						
							| 117 | 116 | nfeq1 | ⊢ Ⅎ 𝑗 Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 | 
						
							| 118 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) | 
						
							| 119 | 117 118 | nfrabw | ⊢ Ⅎ 𝑗 { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } | 
						
							| 120 | 119 | nfcri | ⊢ Ⅎ 𝑗 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } | 
						
							| 121 | 114 120 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 122 |  | nfv | ⊢ Ⅎ 𝑗 𝑘  ∈  ( 0 ... 𝑀 ) | 
						
							| 123 |  | nfv | ⊢ Ⅎ 𝑗 if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) | 
						
							| 124 | 121 122 123 | nf3an | ⊢ Ⅎ 𝑗 ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 125 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) | 
						
							| 126 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 127 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 128 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 129 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 130 |  | etransclem5 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 131 | 8 130 | eqtri | ⊢ 𝐻  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 132 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 133 | 24 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 134 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 135 | 133 134 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 136 | 135 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 137 |  | elfznn0 | ⊢ ( ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 139 | 127 128 129 131 132 138 | etransclem20 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 140 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 141 | 139 140 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 142 | 141 | 3ad2antl1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 143 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐻 ‘ 𝑗 )  =  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) )  =  ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ) | 
						
							| 145 | 144 43 | fveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 146 | 145 | fveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) | 
						
							| 147 |  | simp2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 148 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 149 | 148 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 150 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 151 | 150 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 152 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  𝑃  ∈  ℕ ) | 
						
							| 153 | 152 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 154 |  | etransclem5 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( ℎ  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 155 | 8 154 | eqtri | ⊢ 𝐻  =  ( ℎ  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 156 | 26 | elfzelzd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 157 | 156 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 158 | 157 | 3adant3 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 159 |  | simp3 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 160 | 149 151 153 155 147 158 159 | etransclem19 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) )  =  ( 𝑦  ∈  𝑋  ↦  0 ) ) | 
						
							| 161 |  | eqidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  ∧  𝑦  =  𝑥 )  →  0  =  0 ) | 
						
							| 162 |  | simp1lr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 163 |  | 0red | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  0  ∈  ℝ ) | 
						
							| 164 | 160 161 162 163 | fvmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 165 | 124 125 126 142 146 147 164 | fprod0 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  ∧  𝑘  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 166 | 165 | rexlimdv3a | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑀 ) if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( 𝑐 ‘ 𝑘 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 167 | 113 166 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 168 | 15 167 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 169 | 168 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  0 ) ) | 
						
							| 170 | 6 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 171 | 170 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 172 | 171 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ! ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 173 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 174 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 175 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 176 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 177 | 174 175 176 135 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 178 | 177 137 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 179 | 178 | faccld | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 180 | 179 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 181 | 173 180 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 182 | 179 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 183 | 173 180 182 | fprodn0 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 184 | 172 181 183 | divcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 185 | 184 | mul01d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  0 )  =  0 ) | 
						
							| 186 | 185 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  0 )  =  0 ) | 
						
							| 187 | 169 186 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 188 | 187 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) 0 ) | 
						
							| 189 |  | eqid | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 190 | 189 6 | etransclem16 | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin ) | 
						
							| 191 | 190 | olcd | ⊢ ( 𝜑  →  ( ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin ) ) | 
						
							| 192 | 191 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin ) ) | 
						
							| 193 |  | sumz | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 )  ∈  Fin )  →  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) 0  =  0 ) | 
						
							| 194 | 192 193 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) 0  =  0 ) | 
						
							| 195 | 188 194 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 196 | 195 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 197 | 10 196 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) |