| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem32.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
etransclem32.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 3 |
|
etransclem32.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 4 |
|
etransclem32.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 5 |
|
etransclem32.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 6 |
|
etransclem32.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
|
etransclem32.ngt |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) < 𝑁 ) |
| 8 |
|
etransclem32.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 9 |
|
etransclem11 |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
| 10 |
1 2 3 4 5 6 8 9
|
etransclem30 |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) |
| 12 |
9 6
|
etransclem12 |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 14 |
11 13
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 17 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
| 18 |
17
|
nfn |
⊢ Ⅎ 𝑘 ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
| 19 |
16 18
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 20 |
|
fzssre |
⊢ ( 0 ... 𝑁 ) ⊆ ℝ |
| 21 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ↔ ( 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) ) |
| 22 |
21
|
simplbi |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) |
| 23 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
| 26 |
25
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... 𝑁 ) ) |
| 27 |
20 26
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
| 29 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 30 |
3 29
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 31 |
30
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℝ ) |
| 32 |
3
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 33 |
31 32
|
ifcld |
⊢ ( 𝜑 → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
| 34 |
33
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
| 35 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ↔ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 36 |
35
|
biimpri |
⊢ ( ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 37 |
36
|
r19.21bi |
⊢ ( ( ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 38 |
37
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 39 |
28 34 38
|
nltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 40 |
39
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) → ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 41 |
19 40
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 42 |
21
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) |
| 43 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 𝑘 ) ) |
| 44 |
43
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) |
| 45 |
42 44
|
eqtr3di |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑁 = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → 𝑁 = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑘 = ℎ → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ ℎ ) ) |
| 48 |
47
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) |
| 49 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
| 50 |
25
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ( 0 ... 𝑁 ) ) |
| 51 |
20 50
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ℝ ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ℝ ) |
| 53 |
31 32
|
ifcld |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
| 54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
| 55 |
|
eqeq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 = 0 ↔ ℎ = 0 ) ) |
| 56 |
55
|
ifbid |
⊢ ( 𝑘 = ℎ → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 57 |
47 56
|
breq12d |
⊢ ( 𝑘 = ℎ → ( ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ↔ ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 58 |
57
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 59 |
58
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 60 |
49 52 54 59
|
fsumle |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) ≤ Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 61 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 62 |
4 61
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 63 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 64 |
30 63
|
ifcld |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
| 66 |
65
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℂ ) |
| 67 |
|
iftrue |
⊢ ( ℎ = 0 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑃 − 1 ) ) |
| 68 |
62 66 67
|
fsum1p |
⊢ ( 𝜑 → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑃 − 1 ) + Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 69 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 70 |
69
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
| 71 |
70
|
a1i |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
| 72 |
71
|
sumeq1d |
⊢ ( 𝜑 → Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = Σ ℎ ∈ ( 1 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
| 73 |
|
0red |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
| 74 |
|
1red |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
| 75 |
|
elfzelz |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ∈ ℤ ) |
| 76 |
75
|
zred |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ∈ ℝ ) |
| 77 |
|
0lt1 |
⊢ 0 < 1 |
| 78 |
77
|
a1i |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 < 1 ) |
| 79 |
|
elfzle1 |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 1 ≤ ℎ ) |
| 80 |
73 74 76 78 79
|
ltletrd |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 < ℎ ) |
| 81 |
80
|
gt0ne0d |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ≠ 0 ) |
| 82 |
81
|
neneqd |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ¬ ℎ = 0 ) |
| 83 |
82
|
iffalsed |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 1 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
| 85 |
84
|
sumeq2dv |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 ) |
| 86 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 87 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 88 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑃 ∈ ℂ ) → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) ) |
| 89 |
86 87 88
|
syl2anc |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) ) |
| 90 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 91 |
4 90
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) = ( 𝑀 · 𝑃 ) ) |
| 93 |
89 92
|
eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( 𝑀 · 𝑃 ) ) |
| 94 |
72 85 93
|
3eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑀 · 𝑃 ) ) |
| 95 |
94
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑃 − 1 ) + ( 𝑀 · 𝑃 ) ) ) |
| 96 |
30
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℂ ) |
| 97 |
4 63
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℕ0 ) |
| 98 |
97
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℂ ) |
| 99 |
96 98
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + ( 𝑀 · 𝑃 ) ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 100 |
68 95 99
|
3eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 101 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 102 |
60 101
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 103 |
48 102
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 104 |
46 103
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 105 |
41 104
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 106 |
97 30
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℕ0 ) |
| 107 |
106
|
nn0red |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℝ ) |
| 108 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 109 |
107 108
|
ltnled |
⊢ ( 𝜑 → ( ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) < 𝑁 ↔ ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 110 |
7 109
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 111 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 112 |
105 111
|
condan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 114 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
| 115 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... 𝑀 ) |
| 116 |
115
|
nfsum1 |
⊢ Ⅎ 𝑗 Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) |
| 117 |
116
|
nfeq1 |
⊢ Ⅎ 𝑗 Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 |
| 118 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) |
| 119 |
117 118
|
nfrabw |
⊢ Ⅎ 𝑗 { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } |
| 120 |
119
|
nfcri |
⊢ Ⅎ 𝑗 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } |
| 121 |
114 120
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 122 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ ( 0 ... 𝑀 ) |
| 123 |
|
nfv |
⊢ Ⅎ 𝑗 if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
| 124 |
121 122 123
|
nf3an |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 125 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) |
| 126 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
| 127 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 128 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 129 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
| 130 |
|
etransclem5 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 131 |
8 130
|
eqtri |
⊢ 𝐻 = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 132 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 133 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
| 134 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 135 |
133 134
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
| 136 |
135
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
| 137 |
|
elfznn0 |
⊢ ( ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
| 138 |
136 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
| 139 |
127 128 129 131 132 138
|
etransclem20 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) |
| 140 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ 𝑋 ) |
| 141 |
139 140
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 142 |
141
|
3ad2antl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 143 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑘 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ) |
| 145 |
144 43
|
fveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ) |
| 146 |
145
|
fveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) |
| 147 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 148 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 149 |
148
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 150 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 151 |
150
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 152 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑃 ∈ ℕ ) |
| 153 |
152
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑃 ∈ ℕ ) |
| 154 |
|
etransclem5 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( ℎ ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 155 |
8 154
|
eqtri |
⊢ 𝐻 = ( ℎ ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 156 |
26
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
| 157 |
156
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
| 158 |
157
|
3adant3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
| 159 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
| 160 |
149 151 153 155 147 158 159
|
etransclem19 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝑋 ↦ 0 ) ) |
| 161 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑦 = 𝑥 ) → 0 = 0 ) |
| 162 |
|
simp1lr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑥 ∈ 𝑋 ) |
| 163 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 0 ∈ ℝ ) |
| 164 |
160 161 162 163
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) = 0 ) |
| 165 |
124 125 126 142 146 147 164
|
fprod0 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
| 166 |
165
|
rexlimdv3a |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ( ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |
| 167 |
113 166
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
| 168 |
15 167
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
| 169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) ) |
| 170 |
6
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 171 |
170
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 173 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
| 174 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝜑 ) |
| 175 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
| 176 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 177 |
174 175 176 135
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
| 178 |
177 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
| 179 |
178
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℕ ) |
| 180 |
179
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℂ ) |
| 181 |
173 180
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℂ ) |
| 182 |
179
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ≠ 0 ) |
| 183 |
173 180 182
|
fprodn0 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ≠ 0 ) |
| 184 |
172 181 183
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 185 |
184
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) = 0 ) |
| 186 |
185
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) = 0 ) |
| 187 |
169 186
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = 0 ) |
| 188 |
187
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 ) |
| 189 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |
| 190 |
189 6
|
etransclem16 |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) |
| 191 |
190
|
olcd |
⊢ ( 𝜑 → ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) ) |
| 192 |
191
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) ) |
| 193 |
|
sumz |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 = 0 ) |
| 194 |
192 193
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 = 0 ) |
| 195 |
188 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = 0 ) |
| 196 |
195
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 197 |
10 196
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |