| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem32.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem32.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem32.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem32.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem32.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem32.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | etransclem32.ngt |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) < N ) | 
						
							| 8 |  | etransclem32.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 9 |  | etransclem11 |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 10 | 1 2 3 4 5 6 8 9 | etransclem30 |  |-  ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) | 
						
							| 12 | 9 6 | etransclem12 |  |-  ( ph -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 14 | 11 13 | eleqtrd |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 15 | 14 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 16 |  | nfv |  |-  F/ k ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 17 |  | nfre1 |  |-  F/ k E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) | 
						
							| 18 | 17 | nfn |  |-  F/ k -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) | 
						
							| 19 | 16 18 | nfan |  |-  F/ k ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 20 |  | fzssre |  |-  ( 0 ... N ) C_ RR | 
						
							| 21 |  | rabid |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) | 
						
							| 22 | 21 | simplbi |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) | 
						
							| 23 |  | elmapi |  |-  ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 26 | 25 | ffvelcdmda |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ( 0 ... N ) ) | 
						
							| 27 | 20 26 | sselid |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. RR ) | 
						
							| 28 | 27 | adantlr |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. RR ) | 
						
							| 29 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 30 | 3 29 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 31 | 30 | nn0red |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 32 | 3 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 33 | 31 32 | ifcld |  |-  ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 34 | 33 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 35 |  | ralnex |  |-  ( A. k e. ( 0 ... M ) -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) <-> -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 36 | 35 | biimpri |  |-  ( -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) -> A. k e. ( 0 ... M ) -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 37 | 36 | r19.21bi |  |-  ( ( -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) /\ k e. ( 0 ... M ) ) -> -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 38 | 37 | adantll |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 39 | 28 34 38 | nltled |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) | 
						
							| 40 | 39 | ex |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( k e. ( 0 ... M ) -> ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 41 | 19 40 | ralrimi |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) | 
						
							| 42 | 21 | simprbi |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) | 
						
							| 43 |  | fveq2 |  |-  ( j = k -> ( c ` j ) = ( c ` k ) ) | 
						
							| 44 | 43 | cbvsumv |  |-  sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ k e. ( 0 ... M ) ( c ` k ) | 
						
							| 45 | 42 44 | eqtr3di |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> N = sum_ k e. ( 0 ... M ) ( c ` k ) ) | 
						
							| 46 | 45 | ad2antlr |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> N = sum_ k e. ( 0 ... M ) ( c ` k ) ) | 
						
							| 47 |  | fveq2 |  |-  ( k = h -> ( c ` k ) = ( c ` h ) ) | 
						
							| 48 | 47 | cbvsumv |  |-  sum_ k e. ( 0 ... M ) ( c ` k ) = sum_ h e. ( 0 ... M ) ( c ` h ) | 
						
							| 49 |  | fzfid |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 50 | 25 | ffvelcdmda |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. ( 0 ... N ) ) | 
						
							| 51 | 20 50 | sselid |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. RR ) | 
						
							| 52 | 51 | adantlr |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. RR ) | 
						
							| 53 | 31 32 | ifcld |  |-  ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 54 | 53 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 55 |  | eqeq1 |  |-  ( k = h -> ( k = 0 <-> h = 0 ) ) | 
						
							| 56 | 55 | ifbid |  |-  ( k = h -> if ( k = 0 , ( P - 1 ) , P ) = if ( h = 0 , ( P - 1 ) , P ) ) | 
						
							| 57 | 47 56 | breq12d |  |-  ( k = h -> ( ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) <-> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 58 | 57 | rspccva |  |-  ( ( A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) | 
						
							| 59 | 58 | adantll |  |-  ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) | 
						
							| 60 | 49 52 54 59 | fsumle |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) ( c ` h ) <_ sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) ) | 
						
							| 61 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 62 | 4 61 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 63 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 64 | 30 63 | ifcld |  |-  ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 66 | 65 | nn0cnd |  |-  ( ( ph /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. CC ) | 
						
							| 67 |  | iftrue |  |-  ( h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) | 
						
							| 68 | 62 66 67 | fsum1p |  |-  ( ph -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( P - 1 ) + sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 69 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 70 | 69 | oveq1i |  |-  ( ( 0 + 1 ) ... M ) = ( 1 ... M ) | 
						
							| 71 | 70 | a1i |  |-  ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) | 
						
							| 72 | 71 | sumeq1d |  |-  ( ph -> sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) = sum_ h e. ( 1 ... M ) if ( h = 0 , ( P - 1 ) , P ) ) | 
						
							| 73 |  | 0red |  |-  ( h e. ( 1 ... M ) -> 0 e. RR ) | 
						
							| 74 |  | 1red |  |-  ( h e. ( 1 ... M ) -> 1 e. RR ) | 
						
							| 75 |  | elfzelz |  |-  ( h e. ( 1 ... M ) -> h e. ZZ ) | 
						
							| 76 | 75 | zred |  |-  ( h e. ( 1 ... M ) -> h e. RR ) | 
						
							| 77 |  | 0lt1 |  |-  0 < 1 | 
						
							| 78 | 77 | a1i |  |-  ( h e. ( 1 ... M ) -> 0 < 1 ) | 
						
							| 79 |  | elfzle1 |  |-  ( h e. ( 1 ... M ) -> 1 <_ h ) | 
						
							| 80 | 73 74 76 78 79 | ltletrd |  |-  ( h e. ( 1 ... M ) -> 0 < h ) | 
						
							| 81 | 80 | gt0ne0d |  |-  ( h e. ( 1 ... M ) -> h =/= 0 ) | 
						
							| 82 | 81 | neneqd |  |-  ( h e. ( 1 ... M ) -> -. h = 0 ) | 
						
							| 83 | 82 | iffalsed |  |-  ( h e. ( 1 ... M ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ h e. ( 1 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) | 
						
							| 85 | 84 | sumeq2dv |  |-  ( ph -> sum_ h e. ( 1 ... M ) if ( h = 0 , ( P - 1 ) , P ) = sum_ h e. ( 1 ... M ) P ) | 
						
							| 86 |  | fzfid |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 87 | 3 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 88 |  | fsumconst |  |-  ( ( ( 1 ... M ) e. Fin /\ P e. CC ) -> sum_ h e. ( 1 ... M ) P = ( ( # ` ( 1 ... M ) ) x. P ) ) | 
						
							| 89 | 86 87 88 | syl2anc |  |-  ( ph -> sum_ h e. ( 1 ... M ) P = ( ( # ` ( 1 ... M ) ) x. P ) ) | 
						
							| 90 |  | hashfz1 |  |-  ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 91 | 4 90 | syl |  |-  ( ph -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 92 | 91 | oveq1d |  |-  ( ph -> ( ( # ` ( 1 ... M ) ) x. P ) = ( M x. P ) ) | 
						
							| 93 | 89 92 | eqtrd |  |-  ( ph -> sum_ h e. ( 1 ... M ) P = ( M x. P ) ) | 
						
							| 94 | 72 85 93 | 3eqtrd |  |-  ( ph -> sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( M x. P ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ph -> ( ( P - 1 ) + sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) ) = ( ( P - 1 ) + ( M x. P ) ) ) | 
						
							| 96 | 30 | nn0cnd |  |-  ( ph -> ( P - 1 ) e. CC ) | 
						
							| 97 | 4 63 | nn0mulcld |  |-  ( ph -> ( M x. P ) e. NN0 ) | 
						
							| 98 | 97 | nn0cnd |  |-  ( ph -> ( M x. P ) e. CC ) | 
						
							| 99 | 96 98 | addcomd |  |-  ( ph -> ( ( P - 1 ) + ( M x. P ) ) = ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 100 | 68 95 99 | 3eqtrd |  |-  ( ph -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 101 | 100 | ad2antrr |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 102 | 60 101 | breqtrd |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) ( c ` h ) <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 103 | 48 102 | eqbrtrid |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ k e. ( 0 ... M ) ( c ` k ) <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 104 | 46 103 | eqbrtrd |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> N <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 105 | 41 104 | syldan |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> N <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 106 | 97 30 | nn0addcld |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. NN0 ) | 
						
							| 107 | 106 | nn0red |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. RR ) | 
						
							| 108 | 6 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 109 | 107 108 | ltnled |  |-  ( ph -> ( ( ( M x. P ) + ( P - 1 ) ) < N <-> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 110 | 7 109 | mpbid |  |-  ( ph -> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 111 | 110 | ad2antrr |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 112 | 105 111 | condan |  |-  ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 113 | 112 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 114 |  | nfv |  |-  F/ j ( ph /\ x e. X ) | 
						
							| 115 |  | nfcv |  |-  F/_ j ( 0 ... M ) | 
						
							| 116 | 115 | nfsum1 |  |-  F/_ j sum_ j e. ( 0 ... M ) ( c ` j ) | 
						
							| 117 | 116 | nfeq1 |  |-  F/ j sum_ j e. ( 0 ... M ) ( c ` j ) = N | 
						
							| 118 |  | nfcv |  |-  F/_ j ( ( 0 ... N ) ^m ( 0 ... M ) ) | 
						
							| 119 | 117 118 | nfrabw |  |-  F/_ j { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } | 
						
							| 120 | 119 | nfcri |  |-  F/ j c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } | 
						
							| 121 | 114 120 | nfan |  |-  F/ j ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 122 |  | nfv |  |-  F/ j k e. ( 0 ... M ) | 
						
							| 123 |  | nfv |  |-  F/ j if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) | 
						
							| 124 | 121 122 123 | nf3an |  |-  F/ j ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 125 |  | nfcv |  |-  F/_ j ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) | 
						
							| 126 |  | fzfid |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 127 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> S e. { RR , CC } ) | 
						
							| 128 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 129 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 130 |  | etransclem5 |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 131 | 8 130 | eqtri |  |-  H = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 132 |  | simpr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 133 | 24 | ad2antlr |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 134 |  | simpr |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 135 | 133 134 | ffvelcdmd |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) | 
						
							| 136 | 135 | adantllr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) | 
						
							| 137 |  | elfznn0 |  |-  ( ( c ` j ) e. ( 0 ... N ) -> ( c ` j ) e. NN0 ) | 
						
							| 138 | 136 137 | syl |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. NN0 ) | 
						
							| 139 | 127 128 129 131 132 138 | etransclem20 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) : X --> CC ) | 
						
							| 140 |  | simpllr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> x e. X ) | 
						
							| 141 | 139 140 | ffvelcdmd |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) e. CC ) | 
						
							| 142 | 141 | 3ad2antl1 |  |-  ( ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) e. CC ) | 
						
							| 143 |  | fveq2 |  |-  ( j = k -> ( H ` j ) = ( H ` k ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( j = k -> ( S Dn ( H ` j ) ) = ( S Dn ( H ` k ) ) ) | 
						
							| 145 | 144 43 | fveq12d |  |-  ( j = k -> ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) = ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ) | 
						
							| 146 | 145 | fveq1d |  |-  ( j = k -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) | 
						
							| 147 |  | simp2 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> k e. ( 0 ... M ) ) | 
						
							| 148 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> S e. { RR , CC } ) | 
						
							| 149 | 148 | 3ad2ant1 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> S e. { RR , CC } ) | 
						
							| 150 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 151 | 150 | 3ad2ant1 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 152 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> P e. NN ) | 
						
							| 153 | 152 | 3ad2ant1 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> P e. NN ) | 
						
							| 154 |  | etransclem5 |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( h e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 155 | 8 154 | eqtri |  |-  H = ( h e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 156 | 26 | elfzelzd |  |-  ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ZZ ) | 
						
							| 157 | 156 | adantllr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ZZ ) | 
						
							| 158 | 157 | 3adant3 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( c ` k ) e. ZZ ) | 
						
							| 159 |  | simp3 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) | 
						
							| 160 | 149 151 153 155 147 158 159 | etransclem19 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) = ( y e. X |-> 0 ) ) | 
						
							| 161 |  | eqidd |  |-  ( ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ y = x ) -> 0 = 0 ) | 
						
							| 162 |  | simp1lr |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> x e. X ) | 
						
							| 163 |  | 0red |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> 0 e. RR ) | 
						
							| 164 | 160 161 162 163 | fvmptd |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) = 0 ) | 
						
							| 165 | 124 125 126 142 146 147 164 | fprod0 |  |-  ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) | 
						
							| 166 | 165 | rexlimdv3a |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> ( E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) ) | 
						
							| 167 | 113 166 | mpd |  |-  ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) | 
						
							| 168 | 15 167 | syldan |  |-  ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) ) | 
						
							| 170 | 6 | faccld |  |-  ( ph -> ( ! ` N ) e. NN ) | 
						
							| 171 | 170 | nncnd |  |-  ( ph -> ( ! ` N ) e. CC ) | 
						
							| 172 | 171 | adantr |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ! ` N ) e. CC ) | 
						
							| 173 |  | fzfid |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 174 |  | simpll |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ph ) | 
						
							| 175 | 14 | adantr |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 176 |  | simpr |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 177 | 174 175 176 135 | syl21anc |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) | 
						
							| 178 | 177 137 | syl |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. NN0 ) | 
						
							| 179 | 178 | faccld |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) e. NN ) | 
						
							| 180 | 179 | nncnd |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) e. CC ) | 
						
							| 181 | 173 180 | fprodcl |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) e. CC ) | 
						
							| 182 | 179 | nnne0d |  |-  ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) =/= 0 ) | 
						
							| 183 | 173 180 182 | fprodn0 |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) =/= 0 ) | 
						
							| 184 | 172 181 183 | divcld |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. CC ) | 
						
							| 185 | 184 | mul01d |  |-  ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) = 0 ) | 
						
							| 186 | 185 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) = 0 ) | 
						
							| 187 | 169 186 | eqtrd |  |-  ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = 0 ) | 
						
							| 188 | 187 | sumeq2dv |  |-  ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 ) | 
						
							| 189 |  | eqid |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 190 | 189 6 | etransclem16 |  |-  ( ph -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) | 
						
							| 191 | 190 | olcd |  |-  ( ph -> ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) ) | 
						
							| 192 | 191 | adantr |  |-  ( ( ph /\ x e. X ) -> ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) ) | 
						
							| 193 |  | sumz |  |-  ( ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 = 0 ) | 
						
							| 194 | 192 193 | syl |  |-  ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 = 0 ) | 
						
							| 195 | 188 194 | eqtrd |  |-  ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = 0 ) | 
						
							| 196 | 195 | mpteq2dva |  |-  ( ph -> ( x e. X |-> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) = ( x e. X |-> 0 ) ) | 
						
							| 197 | 10 196 | eqtrd |  |-  ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> 0 ) ) |