Metamath Proof Explorer


Theorem etransclem32

Description: This is the proof for the last equation in the proof of the derivative calculated in Juillerat p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem32.s φ S
etransclem32.x φ X TopOpen fld 𝑡 S
etransclem32.p φ P
etransclem32.m φ M 0
etransclem32.f F = x X x P 1 j = 1 M x j P
etransclem32.n φ N 0
etransclem32.ngt φ M P + P - 1 < N
etransclem32.h H = j 0 M x X x j if j = 0 P 1 P
Assertion etransclem32 φ S D n F N = x X 0

Proof

Step Hyp Ref Expression
1 etransclem32.s φ S
2 etransclem32.x φ X TopOpen fld 𝑡 S
3 etransclem32.p φ P
4 etransclem32.m φ M 0
5 etransclem32.f F = x X x P 1 j = 1 M x j P
6 etransclem32.n φ N 0
7 etransclem32.ngt φ M P + P - 1 < N
8 etransclem32.h H = j 0 M x X x j if j = 0 P 1 P
9 etransclem11 m 0 d 0 m 0 M | k = 0 M d k = m = n 0 c 0 n 0 M | j = 0 M c j = n
10 1 2 3 4 5 6 8 9 etransclem30 φ S D n F N = x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x
11 simpr φ c m 0 d 0 m 0 M | k = 0 M d k = m N c m 0 d 0 m 0 M | k = 0 M d k = m N
12 9 6 etransclem12 φ m 0 d 0 m 0 M | k = 0 M d k = m N = c 0 N 0 M | j = 0 M c j = N
13 12 adantr φ c m 0 d 0 m 0 M | k = 0 M d k = m N m 0 d 0 m 0 M | k = 0 M d k = m N = c 0 N 0 M | j = 0 M c j = N
14 11 13 eleqtrd φ c m 0 d 0 m 0 M | k = 0 M d k = m N c c 0 N 0 M | j = 0 M c j = N
15 14 adantlr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N c c 0 N 0 M | j = 0 M c j = N
16 nfv k φ c c 0 N 0 M | j = 0 M c j = N
17 nfre1 k k 0 M if k = 0 P 1 P < c k
18 17 nfn k ¬ k 0 M if k = 0 P 1 P < c k
19 16 18 nfan k φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k
20 fzssre 0 N
21 rabid c c 0 N 0 M | j = 0 M c j = N c 0 N 0 M j = 0 M c j = N
22 21 simplbi c c 0 N 0 M | j = 0 M c j = N c 0 N 0 M
23 elmapi c 0 N 0 M c : 0 M 0 N
24 22 23 syl c c 0 N 0 M | j = 0 M c j = N c : 0 M 0 N
25 24 adantl φ c c 0 N 0 M | j = 0 M c j = N c : 0 M 0 N
26 25 ffvelrnda φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k 0 N
27 20 26 sseldi φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k
28 27 adantlr φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M c k
29 nnm1nn0 P P 1 0
30 3 29 syl φ P 1 0
31 30 nn0red φ P 1
32 3 nnred φ P
33 31 32 ifcld φ if k = 0 P 1 P
34 33 ad3antrrr φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M if k = 0 P 1 P
35 ralnex k 0 M ¬ if k = 0 P 1 P < c k ¬ k 0 M if k = 0 P 1 P < c k
36 35 biimpri ¬ k 0 M if k = 0 P 1 P < c k k 0 M ¬ if k = 0 P 1 P < c k
37 36 r19.21bi ¬ k 0 M if k = 0 P 1 P < c k k 0 M ¬ if k = 0 P 1 P < c k
38 37 adantll φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M ¬ if k = 0 P 1 P < c k
39 28 34 38 nltled φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M c k if k = 0 P 1 P
40 39 ex φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M c k if k = 0 P 1 P
41 19 40 ralrimi φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k k 0 M c k if k = 0 P 1 P
42 fveq2 j = k c j = c k
43 42 cbvsumv j = 0 M c j = k = 0 M c k
44 21 simprbi c c 0 N 0 M | j = 0 M c j = N j = 0 M c j = N
45 43 44 syl5reqr c c 0 N 0 M | j = 0 M c j = N N = k = 0 M c k
46 45 ad2antlr φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P N = k = 0 M c k
47 fveq2 k = h c k = c h
48 47 cbvsumv k = 0 M c k = h = 0 M c h
49 fzfid φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P 0 M Fin
50 25 ffvelrnda φ c c 0 N 0 M | j = 0 M c j = N h 0 M c h 0 N
51 20 50 sseldi φ c c 0 N 0 M | j = 0 M c j = N h 0 M c h
52 51 adantlr φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h 0 M c h
53 31 32 ifcld φ if h = 0 P 1 P
54 53 ad3antrrr φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h 0 M if h = 0 P 1 P
55 eqeq1 k = h k = 0 h = 0
56 55 ifbid k = h if k = 0 P 1 P = if h = 0 P 1 P
57 47 56 breq12d k = h c k if k = 0 P 1 P c h if h = 0 P 1 P
58 57 rspccva k 0 M c k if k = 0 P 1 P h 0 M c h if h = 0 P 1 P
59 58 adantll φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h 0 M c h if h = 0 P 1 P
60 49 52 54 59 fsumle φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h = 0 M c h h = 0 M if h = 0 P 1 P
61 nn0uz 0 = 0
62 4 61 eleqtrdi φ M 0
63 3 nnnn0d φ P 0
64 30 63 ifcld φ if h = 0 P 1 P 0
65 64 adantr φ h 0 M if h = 0 P 1 P 0
66 65 nn0cnd φ h 0 M if h = 0 P 1 P
67 iftrue h = 0 if h = 0 P 1 P = P 1
68 62 66 67 fsum1p φ h = 0 M if h = 0 P 1 P = P - 1 + h = 0 + 1 M if h = 0 P 1 P
69 0p1e1 0 + 1 = 1
70 69 oveq1i 0 + 1 M = 1 M
71 70 a1i φ 0 + 1 M = 1 M
72 71 sumeq1d φ h = 0 + 1 M if h = 0 P 1 P = h = 1 M if h = 0 P 1 P
73 0red h 1 M 0
74 1red h 1 M 1
75 elfzelz h 1 M h
76 75 zred h 1 M h
77 0lt1 0 < 1
78 77 a1i h 1 M 0 < 1
79 elfzle1 h 1 M 1 h
80 73 74 76 78 79 ltletrd h 1 M 0 < h
81 80 gt0ne0d h 1 M h 0
82 81 neneqd h 1 M ¬ h = 0
83 82 iffalsed h 1 M if h = 0 P 1 P = P
84 83 adantl φ h 1 M if h = 0 P 1 P = P
85 84 sumeq2dv φ h = 1 M if h = 0 P 1 P = h = 1 M P
86 fzfid φ 1 M Fin
87 3 nncnd φ P
88 fsumconst 1 M Fin P h = 1 M P = 1 M P
89 86 87 88 syl2anc φ h = 1 M P = 1 M P
90 hashfz1 M 0 1 M = M
91 4 90 syl φ 1 M = M
92 91 oveq1d φ 1 M P = M P
93 89 92 eqtrd φ h = 1 M P = M P
94 72 85 93 3eqtrd φ h = 0 + 1 M if h = 0 P 1 P = M P
95 94 oveq2d φ P - 1 + h = 0 + 1 M if h = 0 P 1 P = P - 1 + M P
96 30 nn0cnd φ P 1
97 4 63 nn0mulcld φ M P 0
98 97 nn0cnd φ M P
99 96 98 addcomd φ P - 1 + M P = M P + P - 1
100 68 95 99 3eqtrd φ h = 0 M if h = 0 P 1 P = M P + P - 1
101 100 ad2antrr φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h = 0 M if h = 0 P 1 P = M P + P - 1
102 60 101 breqtrd φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P h = 0 M c h M P + P - 1
103 48 102 eqbrtrid φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P k = 0 M c k M P + P - 1
104 46 103 eqbrtrd φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k if k = 0 P 1 P N M P + P - 1
105 41 104 syldan φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k N M P + P - 1
106 97 30 nn0addcld φ M P + P - 1 0
107 106 nn0red φ M P + P - 1
108 6 nn0red φ N
109 107 108 ltnled φ M P + P - 1 < N ¬ N M P + P - 1
110 7 109 mpbid φ ¬ N M P + P - 1
111 110 ad2antrr φ c c 0 N 0 M | j = 0 M c j = N ¬ k 0 M if k = 0 P 1 P < c k ¬ N M P + P - 1
112 105 111 condan φ c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k
113 112 adantlr φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k
114 nfv j φ x X
115 nfcv _ j 0 M
116 115 nfsum1 _ j j = 0 M c j
117 116 nfeq1 j j = 0 M c j = N
118 nfcv _ j 0 N 0 M
119 117 118 nfrabw _ j c 0 N 0 M | j = 0 M c j = N
120 119 nfcri j c c 0 N 0 M | j = 0 M c j = N
121 114 120 nfan j φ x X c c 0 N 0 M | j = 0 M c j = N
122 nfv j k 0 M
123 nfv j if k = 0 P 1 P < c k
124 121 122 123 nf3an j φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k
125 nfcv _ j S D n H k c k x
126 fzfid φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k 0 M Fin
127 1 ad3antrrr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M S
128 2 ad3antrrr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M X TopOpen fld 𝑡 S
129 3 ad3antrrr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M P
130 etransclem5 j 0 M x X x j if j = 0 P 1 P = k 0 M y X y k if k = 0 P 1 P
131 8 130 eqtri H = k 0 M y X y k if k = 0 P 1 P
132 simpr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M j 0 M
133 24 ad2antlr φ c c 0 N 0 M | j = 0 M c j = N j 0 M c : 0 M 0 N
134 simpr φ c c 0 N 0 M | j = 0 M c j = N j 0 M j 0 M
135 133 134 ffvelrnd φ c c 0 N 0 M | j = 0 M c j = N j 0 M c j 0 N
136 135 adantllr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M c j 0 N
137 elfznn0 c j 0 N c j 0
138 136 137 syl φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M c j 0
139 127 128 129 131 132 138 etransclem20 φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M S D n H j c j : X
140 simpllr φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M x X
141 139 140 ffvelrnd φ x X c c 0 N 0 M | j = 0 M c j = N j 0 M S D n H j c j x
142 141 3ad2antl1 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k j 0 M S D n H j c j x
143 fveq2 j = k H j = H k
144 143 oveq2d j = k S D n H j = S D n H k
145 144 42 fveq12d j = k S D n H j c j = S D n H k c k
146 145 fveq1d j = k S D n H j c j x = S D n H k c k x
147 simp2 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k k 0 M
148 1 ad2antrr φ x X c c 0 N 0 M | j = 0 M c j = N S
149 148 3ad2ant1 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k S
150 2 ad2antrr φ x X c c 0 N 0 M | j = 0 M c j = N X TopOpen fld 𝑡 S
151 150 3ad2ant1 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k X TopOpen fld 𝑡 S
152 3 ad2antrr φ x X c c 0 N 0 M | j = 0 M c j = N P
153 152 3ad2ant1 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k P
154 etransclem5 j 0 M x X x j if j = 0 P 1 P = h 0 M y X y h if h = 0 P 1 P
155 8 154 eqtri H = h 0 M y X y h if h = 0 P 1 P
156 fzssz 0 N
157 156 26 sseldi φ c c 0 N 0 M | j = 0 M c j = N k 0 M c k
158 157 adantllr φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M c k
159 158 3adant3 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k c k
160 simp3 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k if k = 0 P 1 P < c k
161 149 151 153 155 147 159 160 etransclem19 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k S D n H k c k = y X 0
162 eqidd φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k y = x 0 = 0
163 simp1lr φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k x X
164 0red φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k 0
165 161 162 163 164 fvmptd φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k S D n H k c k x = 0
166 124 125 126 142 146 147 165 fprod0 φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k j = 0 M S D n H j c j x = 0
167 166 rexlimdv3a φ x X c c 0 N 0 M | j = 0 M c j = N k 0 M if k = 0 P 1 P < c k j = 0 M S D n H j c j x = 0
168 113 167 mpd φ x X c c 0 N 0 M | j = 0 M c j = N j = 0 M S D n H j c j x = 0
169 15 168 syldan φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M S D n H j c j x = 0
170 169 oveq2d φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x = N ! j = 0 M c j ! 0
171 6 faccld φ N !
172 171 nncnd φ N !
173 172 adantr φ c m 0 d 0 m 0 M | k = 0 M d k = m N N !
174 fzfid φ c m 0 d 0 m 0 M | k = 0 M d k = m N 0 M Fin
175 simpll φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M φ
176 14 adantr φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c c 0 N 0 M | j = 0 M c j = N
177 simpr φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M j 0 M
178 175 176 177 135 syl21anc φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j 0 N
179 178 137 syl φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j 0
180 179 faccld φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j !
181 180 nncnd φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j !
182 174 181 fprodcl φ c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M c j !
183 180 nnne0d φ c m 0 d 0 m 0 M | k = 0 M d k = m N j 0 M c j ! 0
184 174 181 183 fprodn0 φ c m 0 d 0 m 0 M | k = 0 M d k = m N j = 0 M c j ! 0
185 173 182 184 divcld φ c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j !
186 185 mul01d φ c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! 0 = 0
187 186 adantlr φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! 0 = 0
188 170 187 eqtrd φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x = 0
189 188 sumeq2dv φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x = c m 0 d 0 m 0 M | k = 0 M d k = m N 0
190 eqid m 0 d 0 m 0 M | k = 0 M d k = m = m 0 d 0 m 0 M | k = 0 M d k = m
191 190 6 etransclem16 φ m 0 d 0 m 0 M | k = 0 M d k = m N Fin
192 191 olcd φ m 0 d 0 m 0 M | k = 0 M d k = m N A m 0 d 0 m 0 M | k = 0 M d k = m N Fin
193 192 adantr φ x X m 0 d 0 m 0 M | k = 0 M d k = m N A m 0 d 0 m 0 M | k = 0 M d k = m N Fin
194 sumz m 0 d 0 m 0 M | k = 0 M d k = m N A m 0 d 0 m 0 M | k = 0 M d k = m N Fin c m 0 d 0 m 0 M | k = 0 M d k = m N 0 = 0
195 193 194 syl φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N 0 = 0
196 189 195 eqtrd φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x = 0
197 196 mpteq2dva φ x X c m 0 d 0 m 0 M | k = 0 M d k = m N N ! j = 0 M c j ! j = 0 M S D n H j c j x = x X 0
198 10 197 eqtrd φ S D n F N = x X 0