| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem46.q |
|- ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
| 2 |
|
etransclem46.qe0 |
|- ( ph -> ( Q ` _e ) = 0 ) |
| 3 |
|
etransclem46.a |
|- A = ( coeff ` Q ) |
| 4 |
|
etransclem46.m |
|- M = ( deg ` Q ) |
| 5 |
|
etransclem46.rex |
|- ( ph -> RR C_ RR ) |
| 6 |
|
etransclem46.s |
|- ( ph -> RR e. { RR , CC } ) |
| 7 |
|
etransclem46.x |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 8 |
|
etransclem46.p |
|- ( ph -> P e. NN ) |
| 9 |
|
etransclem46.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 10 |
|
etransclem46.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
| 11 |
|
etransclem46.r |
|- R = ( ( M x. P ) + ( P - 1 ) ) |
| 12 |
|
etransclem46.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 13 |
|
etransclem46.h |
|- O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) |
| 14 |
10
|
a1i |
|- ( ph -> L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) |
| 15 |
13
|
oveq2i |
|- ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 16 |
15
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) |
| 18 |
|
ere |
|- _e e. RR |
| 19 |
18
|
recni |
|- _e e. CC |
| 20 |
19
|
a1i |
|- ( x e. RR -> _e e. CC ) |
| 21 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 22 |
21
|
negcld |
|- ( x e. RR -> -u x e. CC ) |
| 23 |
20 22
|
cxpcld |
|- ( x e. RR -> ( _e ^c -u x ) e. CC ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( _e ^c -u x ) e. CC ) |
| 25 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 26 |
|
fzfid |
|- ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) |
| 27 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
| 28 |
6
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> RR e. { RR , CC } ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 30 |
8
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> P e. NN ) |
| 31 |
1
|
eldifad |
|- ( ph -> Q e. ( Poly ` ZZ ) ) |
| 32 |
|
dgrcl |
|- ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) |
| 33 |
31 32
|
syl |
|- ( ph -> ( deg ` Q ) e. NN0 ) |
| 34 |
4 33
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> M e. NN0 ) |
| 36 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
| 37 |
28 29 30 35 9 36
|
etransclem33 |
|- ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 38 |
27 37
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 39 |
38
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 40 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) |
| 41 |
39 40
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
| 42 |
26 41
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
| 43 |
12
|
fvmpt2 |
|- ( ( x e. RR /\ sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 44 |
25 42 43
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 45 |
44 42
|
eqeltrd |
|- ( ( ph /\ x e. RR ) -> ( G ` x ) e. CC ) |
| 46 |
24 45
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
| 47 |
46
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
| 48 |
47
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
| 49 |
6 7
|
dvdmsscn |
|- ( ph -> RR C_ CC ) |
| 50 |
49 8 9
|
etransclem8 |
|- ( ph -> F : RR --> CC ) |
| 51 |
50
|
ffvelcdmda |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. CC ) |
| 52 |
24 51
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 53 |
52
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 54 |
53
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 55 |
54
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 56 |
18
|
a1i |
|- ( x e. RR -> _e e. RR ) |
| 57 |
|
0re |
|- 0 e. RR |
| 58 |
|
epos |
|- 0 < _e |
| 59 |
57 18 58
|
ltleii |
|- 0 <_ _e |
| 60 |
59
|
a1i |
|- ( x e. RR -> 0 <_ _e ) |
| 61 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
| 62 |
56 60 61
|
recxpcld |
|- ( x e. RR -> ( _e ^c -u x ) e. RR ) |
| 63 |
62
|
renegcld |
|- ( x e. RR -> -u ( _e ^c -u x ) e. RR ) |
| 64 |
63
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. RR ) |
| 65 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 66 |
65
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 67 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 68 |
67
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 69 |
22
|
adantl |
|- ( ( T. /\ x e. RR ) -> -u x e. CC ) |
| 70 |
|
neg1rr |
|- -u 1 e. RR |
| 71 |
70
|
a1i |
|- ( ( T. /\ x e. RR ) -> -u 1 e. RR ) |
| 72 |
19
|
a1i |
|- ( y e. CC -> _e e. CC ) |
| 73 |
|
id |
|- ( y e. CC -> y e. CC ) |
| 74 |
72 73
|
cxpcld |
|- ( y e. CC -> ( _e ^c y ) e. CC ) |
| 75 |
74
|
adantl |
|- ( ( T. /\ y e. CC ) -> ( _e ^c y ) e. CC ) |
| 76 |
21
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
| 77 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
| 78 |
66
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 79 |
66 76 77 78
|
dvmptneg |
|- ( T. -> ( RR _D ( x e. RR |-> -u x ) ) = ( x e. RR |-> -u 1 ) ) |
| 80 |
|
epr |
|- _e e. RR+ |
| 81 |
|
dvcxp2 |
|- ( _e e. RR+ -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) ) |
| 82 |
80 81
|
ax-mp |
|- ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) |
| 83 |
|
loge |
|- ( log ` _e ) = 1 |
| 84 |
83
|
oveq1i |
|- ( ( log ` _e ) x. ( _e ^c y ) ) = ( 1 x. ( _e ^c y ) ) |
| 85 |
74
|
mullidd |
|- ( y e. CC -> ( 1 x. ( _e ^c y ) ) = ( _e ^c y ) ) |
| 86 |
84 85
|
eqtrid |
|- ( y e. CC -> ( ( log ` _e ) x. ( _e ^c y ) ) = ( _e ^c y ) ) |
| 87 |
86
|
mpteq2ia |
|- ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) |
| 88 |
82 87
|
eqtri |
|- ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) |
| 89 |
88
|
a1i |
|- ( T. -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) ) |
| 90 |
|
oveq2 |
|- ( y = -u x -> ( _e ^c y ) = ( _e ^c -u x ) ) |
| 91 |
66 68 69 71 75 75 79 89 90 90
|
dvmptco |
|- ( T. -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) ) |
| 92 |
91
|
mptru |
|- ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) |
| 93 |
70
|
a1i |
|- ( x e. RR -> -u 1 e. RR ) |
| 94 |
93
|
recnd |
|- ( x e. RR -> -u 1 e. CC ) |
| 95 |
23 94
|
mulcomd |
|- ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = ( -u 1 x. ( _e ^c -u x ) ) ) |
| 96 |
23
|
mulm1d |
|- ( x e. RR -> ( -u 1 x. ( _e ^c -u x ) ) = -u ( _e ^c -u x ) ) |
| 97 |
95 96
|
eqtrd |
|- ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = -u ( _e ^c -u x ) ) |
| 98 |
97
|
mpteq2ia |
|- ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) |
| 99 |
92 98
|
eqtri |
|- ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) |
| 100 |
99
|
a1i |
|- ( ph -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) ) |
| 101 |
27
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
| 102 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
| 103 |
101 102
|
syl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( i + 1 ) e. NN0 ) |
| 104 |
|
ovex |
|- ( i + 1 ) e. _V |
| 105 |
|
eleq1 |
|- ( j = ( i + 1 ) -> ( j e. NN0 <-> ( i + 1 ) e. NN0 ) ) |
| 106 |
105
|
anbi2d |
|- ( j = ( i + 1 ) -> ( ( ph /\ j e. NN0 ) <-> ( ph /\ ( i + 1 ) e. NN0 ) ) ) |
| 107 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) |
| 108 |
107
|
feq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) |
| 109 |
106 108
|
imbi12d |
|- ( j = ( i + 1 ) -> ( ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) |
| 110 |
|
eleq1 |
|- ( i = j -> ( i e. NN0 <-> j e. NN0 ) ) |
| 111 |
110
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. NN0 ) <-> ( ph /\ j e. NN0 ) ) ) |
| 112 |
|
fveq2 |
|- ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) |
| 113 |
112
|
feq1d |
|- ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) |
| 114 |
111 113
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) |
| 115 |
114 37
|
chvarvv |
|- ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
| 116 |
104 109 115
|
vtocl |
|- ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 117 |
103 116
|
syldan |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 118 |
117
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 119 |
118 40
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
| 120 |
26 119
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
| 121 |
8 34 9 12
|
etransclem39 |
|- ( ph -> G : RR --> CC ) |
| 122 |
121
|
feqmptd |
|- ( ph -> G = ( x e. RR |-> ( G ` x ) ) ) |
| 123 |
122
|
eqcomd |
|- ( ph -> ( x e. RR |-> ( G ` x ) ) = G ) |
| 124 |
123
|
oveq2d |
|- ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( RR _D G ) ) |
| 125 |
|
nfcv |
|- F/_ x F |
| 126 |
|
elfznn0 |
|- ( i e. ( 0 ... ( R + 1 ) ) -> i e. NN0 ) |
| 127 |
126 37
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 128 |
125 50 127 12
|
etransclem2 |
|- ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 129 |
124 128
|
eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 130 |
6 24 64 100 45 120 129
|
dvmptmul |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) ) |
| 131 |
120 24
|
mulcomd |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) = ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 132 |
131
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) ) |
| 133 |
24
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. CC ) |
| 134 |
133 45
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
| 135 |
24 120
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) e. CC ) |
| 136 |
134 135
|
addcomd |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 137 |
135 46
|
negsubd |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 138 |
24 45
|
mulneg1d |
|- ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) |
| 139 |
138
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 140 |
24 120 45
|
subdid |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 141 |
137 139 140
|
3eqtr4d |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) ) |
| 142 |
44
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
| 143 |
26 119 41
|
fsumsub |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
| 144 |
|
fveq2 |
|- ( j = i -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` i ) ) |
| 145 |
144
|
fveq1d |
|- ( j = i -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 146 |
107
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) |
| 147 |
|
fveq2 |
|- ( j = 0 -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` 0 ) ) |
| 148 |
147
|
fveq1d |
|- ( j = 0 -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` 0 ) ` x ) ) |
| 149 |
|
fveq2 |
|- ( j = ( R + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( R + 1 ) ) ) |
| 150 |
149
|
fveq1d |
|- ( j = ( R + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) ) |
| 151 |
8
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 152 |
34 151
|
nn0mulcld |
|- ( ph -> ( M x. P ) e. NN0 ) |
| 153 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 154 |
8 153
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 155 |
152 154
|
nn0addcld |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. NN0 ) |
| 156 |
11 155
|
eqeltrid |
|- ( ph -> R e. NN0 ) |
| 157 |
156
|
adantr |
|- ( ( ph /\ x e. RR ) -> R e. NN0 ) |
| 158 |
157
|
nn0zd |
|- ( ( ph /\ x e. RR ) -> R e. ZZ ) |
| 159 |
|
peano2nn0 |
|- ( R e. NN0 -> ( R + 1 ) e. NN0 ) |
| 160 |
156 159
|
syl |
|- ( ph -> ( R + 1 ) e. NN0 ) |
| 161 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 162 |
160 161
|
eleqtrdi |
|- ( ph -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) |
| 163 |
162
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) |
| 164 |
|
elfznn0 |
|- ( j e. ( 0 ... ( R + 1 ) ) -> j e. NN0 ) |
| 165 |
164 115
|
sylan2 |
|- ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
| 166 |
165
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
| 167 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> x e. RR ) |
| 168 |
166 167
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( ( RR Dn F ) ` j ) ` x ) e. CC ) |
| 169 |
145 146 148 150 158 163 168
|
telfsum2 |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) |
| 170 |
142 143 169
|
3eqtr2d |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) |
| 171 |
170
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) ) |
| 172 |
156
|
nn0red |
|- ( ph -> R e. RR ) |
| 173 |
172
|
ltp1d |
|- ( ph -> R < ( R + 1 ) ) |
| 174 |
11 173
|
eqbrtrrid |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) < ( R + 1 ) ) |
| 175 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 176 |
6 7 8 34 9 160 174 175
|
etransclem32 |
|- ( ph -> ( ( RR Dn F ) ` ( R + 1 ) ) = ( x e. RR |-> 0 ) ) |
| 177 |
176
|
fveq1d |
|- ( ph -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = ( ( x e. RR |-> 0 ) ` x ) ) |
| 178 |
|
eqid |
|- ( x e. RR |-> 0 ) = ( x e. RR |-> 0 ) |
| 179 |
178
|
fvmpt2 |
|- ( ( x e. RR /\ 0 e. RR ) -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) |
| 180 |
57 179
|
mpan2 |
|- ( x e. RR -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) |
| 181 |
177 180
|
sylan9eq |
|- ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = 0 ) |
| 182 |
|
cnex |
|- CC e. _V |
| 183 |
182
|
a1i |
|- ( ph -> CC e. _V ) |
| 184 |
6 5
|
ssexd |
|- ( ph -> RR e. _V ) |
| 185 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : RR --> CC /\ RR C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
| 186 |
183 184 50 5 185
|
syl22anc |
|- ( ph -> F e. ( CC ^pm RR ) ) |
| 187 |
|
dvn0 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) |
| 188 |
49 186 187
|
syl2anc |
|- ( ph -> ( ( RR Dn F ) ` 0 ) = F ) |
| 189 |
188
|
fveq1d |
|- ( ph -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) |
| 190 |
189
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) |
| 191 |
181 190
|
oveq12d |
|- ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = ( 0 - ( F ` x ) ) ) |
| 192 |
|
df-neg |
|- -u ( F ` x ) = ( 0 - ( F ` x ) ) |
| 193 |
191 192
|
eqtr4di |
|- ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = -u ( F ` x ) ) |
| 194 |
193
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
| 195 |
141 171 194
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
| 196 |
132 136 195
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
| 197 |
196
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) ) |
| 198 |
24 51
|
mulneg2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. -u ( F ` x ) ) = -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 199 |
198
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 200 |
130 197 199
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 201 |
6 46 53 200
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 202 |
201
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 203 |
|
0red |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) |
| 204 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 205 |
204
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
| 206 |
205
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) |
| 207 |
203 206
|
iccssred |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ RR ) |
| 208 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 209 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 210 |
|
0red |
|- ( j e. ( 0 ... M ) -> 0 e. RR ) |
| 211 |
|
iccntr |
|- ( ( 0 e. RR /\ j e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
| 212 |
210 205 211
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
| 213 |
212
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
| 214 |
17 48 55 202 207 208 209 213
|
dvmptres2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 215 |
19
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> _e e. CC ) |
| 216 |
|
elioore |
|- ( x e. ( 0 (,) j ) -> x e. RR ) |
| 217 |
216
|
recnd |
|- ( x e. ( 0 (,) j ) -> x e. CC ) |
| 218 |
217
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. CC ) |
| 219 |
218
|
negcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) |
| 220 |
215 219
|
cxpcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) |
| 221 |
50
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) |
| 222 |
216
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
| 223 |
221 222
|
ffvelcdmd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
| 224 |
220 223
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 225 |
224
|
negnegd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 226 |
225
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 227 |
226
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 228 |
16 214 227
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
| 229 |
228
|
fveq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) |
| 230 |
229
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) |
| 231 |
|
simpr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) |
| 232 |
|
eqid |
|- ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 233 |
232
|
fvmpt2 |
|- ( ( x e. ( 0 (,) j ) /\ ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 234 |
231 224 233
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 235 |
234
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 236 |
230 235
|
eqtr2d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( RR _D O ) ` x ) ) |
| 237 |
236
|
itgeq2dv |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x ) |
| 238 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
| 239 |
238
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ j ) |
| 240 |
|
eqid |
|- ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
| 241 |
|
eqidd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( y e. CC |-> ( _e ^c y ) ) = ( y e. CC |-> ( _e ^c y ) ) ) |
| 242 |
90
|
adantl |
|- ( ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) /\ y = -u x ) -> ( _e ^c y ) = ( _e ^c -u x ) ) |
| 243 |
210 205
|
iccssred |
|- ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ RR ) |
| 244 |
|
ax-resscn |
|- RR C_ CC |
| 245 |
243 244
|
sstrdi |
|- ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ CC ) |
| 246 |
245
|
sselda |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) |
| 247 |
246
|
negcld |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> -u x e. CC ) |
| 248 |
19
|
a1i |
|- ( x e. CC -> _e e. CC ) |
| 249 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
| 250 |
248 249
|
cxpcld |
|- ( x e. CC -> ( _e ^c -u x ) e. CC ) |
| 251 |
246 250
|
syl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) e. CC ) |
| 252 |
241 242 247 251
|
fvmptd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) = ( _e ^c -u x ) ) |
| 253 |
252
|
eqcomd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) |
| 254 |
253
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) |
| 255 |
254
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) = ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) ) |
| 256 |
|
mnfxr |
|- -oo e. RR* |
| 257 |
256
|
a1i |
|- ( _e e. RR+ -> -oo e. RR* ) |
| 258 |
|
0red |
|- ( _e e. RR+ -> 0 e. RR ) |
| 259 |
|
rpxr |
|- ( _e e. RR+ -> _e e. RR* ) |
| 260 |
|
rpgt0 |
|- ( _e e. RR+ -> 0 < _e ) |
| 261 |
257 258 259 260
|
gtnelioc |
|- ( _e e. RR+ -> -. _e e. ( -oo (,] 0 ) ) |
| 262 |
80 261
|
ax-mp |
|- -. _e e. ( -oo (,] 0 ) |
| 263 |
|
eldif |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) <-> ( _e e. CC /\ -. _e e. ( -oo (,] 0 ) ) ) |
| 264 |
19 262 263
|
mpbir2an |
|- _e e. ( CC \ ( -oo (,] 0 ) ) |
| 265 |
|
cxpcncf2 |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
| 266 |
264 265
|
mp1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
| 267 |
|
eqid |
|- ( x e. ( 0 [,] j ) |-> -u x ) = ( x e. ( 0 [,] j ) |-> -u x ) |
| 268 |
267
|
negcncf |
|- ( ( 0 [,] j ) C_ CC -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 269 |
245 268
|
syl |
|- ( j e. ( 0 ... M ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 270 |
269
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 271 |
266 270
|
cncfmpt1f |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 272 |
255 271
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 273 |
244
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> RR C_ CC ) |
| 274 |
8
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> P e. NN ) |
| 275 |
34
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> M e. NN0 ) |
| 276 |
|
etransclem6 |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
| 277 |
9 276
|
eqtri |
|- F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
| 278 |
243
|
sselda |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) |
| 279 |
278
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) |
| 280 |
273 274 275 277 279
|
etransclem13 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( F ` x ) = prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
| 281 |
280
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) = ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
| 282 |
245
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) |
| 283 |
|
fzfid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... M ) e. Fin ) |
| 284 |
279
|
recnd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) |
| 285 |
284
|
3adant3 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> x e. CC ) |
| 286 |
|
elfzelz |
|- ( k e. ( 0 ... M ) -> k e. ZZ ) |
| 287 |
286
|
zcnd |
|- ( k e. ( 0 ... M ) -> k e. CC ) |
| 288 |
287
|
3ad2ant3 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> k e. CC ) |
| 289 |
285 288
|
subcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( x - k ) e. CC ) |
| 290 |
8
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN ) |
| 291 |
290 153
|
syl |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> ( P - 1 ) e. NN0 ) |
| 292 |
151
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN0 ) |
| 293 |
291 292
|
ifcld |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 294 |
293
|
3adant3 |
|- ( ( ph /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 295 |
294
|
3adant1r |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 296 |
289 295
|
expcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) e. CC ) |
| 297 |
|
nfv |
|- F/ x ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) |
| 298 |
245
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) |
| 299 |
|
ssid |
|- CC C_ CC |
| 300 |
299
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) |
| 301 |
298 300
|
idcncfg |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 302 |
287
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> k e. CC ) |
| 303 |
298 302 300
|
constcncfg |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> k ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 304 |
301 303
|
subcncf |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 305 |
304
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 306 |
154 151
|
ifcld |
|- ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 307 |
|
expcncf |
|- ( if ( k = 0 , ( P - 1 ) , P ) e. NN0 -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
| 308 |
306 307
|
syl |
|- ( ph -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
| 309 |
308
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
| 310 |
299
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) |
| 311 |
|
oveq1 |
|- ( y = ( x - k ) -> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) = ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
| 312 |
297 305 309 310 311
|
cncfcompt2 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 313 |
282 283 296 312
|
fprodcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 314 |
281 313
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 315 |
272 314
|
mulcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 316 |
|
ioossicc |
|- ( 0 (,) j ) C_ ( 0 [,] j ) |
| 317 |
316
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) C_ ( 0 [,] j ) ) |
| 318 |
299
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> CC C_ CC ) |
| 319 |
224
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 320 |
240 315 317 318 319
|
cncfmptssg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 (,) j ) -cn-> CC ) ) |
| 321 |
228 320
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. ( ( 0 (,) j ) -cn-> CC ) ) |
| 322 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 323 |
8
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) |
| 324 |
34
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) |
| 325 |
|
oveq2 |
|- ( j = k -> ( x - j ) = ( x - k ) ) |
| 326 |
325
|
oveq1d |
|- ( j = k -> ( ( x - j ) ^ P ) = ( ( x - k ) ^ P ) ) |
| 327 |
326
|
cbvprodv |
|- prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) |
| 328 |
327
|
oveq2i |
|- ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) |
| 329 |
328
|
mpteq2i |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
| 330 |
9 329
|
eqtri |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
| 331 |
17 322 323 324 330 203 206
|
etransclem18 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
| 332 |
228 331
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. L^1 ) |
| 333 |
|
eqid |
|- ( x e. RR |-> ( G ` x ) ) = ( x e. RR |-> ( G ` x ) ) |
| 334 |
6 7 8 34 9 12
|
etransclem43 |
|- ( ph -> G e. ( RR -cn-> CC ) ) |
| 335 |
123 334
|
eqeltrd |
|- ( ph -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) |
| 336 |
335
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) |
| 337 |
121
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> G : RR --> CC ) |
| 338 |
337 279
|
ffvelcdmd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( G ` x ) e. CC ) |
| 339 |
333 336 207 318 338
|
cncfmptssg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( G ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 340 |
272 339
|
mulcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 341 |
340
|
negcncfg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 342 |
13 341
|
eqeltrid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> O e. ( ( 0 [,] j ) -cn-> CC ) ) |
| 343 |
203 206 239 321 332 342
|
ftc2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x = ( ( O ` j ) - ( O ` 0 ) ) ) |
| 344 |
|
negeq |
|- ( x = j -> -u x = -u j ) |
| 345 |
344
|
oveq2d |
|- ( x = j -> ( _e ^c -u x ) = ( _e ^c -u j ) ) |
| 346 |
|
fveq2 |
|- ( x = j -> ( G ` x ) = ( G ` j ) ) |
| 347 |
345 346
|
oveq12d |
|- ( x = j -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
| 348 |
347
|
negeqd |
|- ( x = j -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
| 349 |
203
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR* ) |
| 350 |
206
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR* ) |
| 351 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> j e. ( 0 [,] j ) ) |
| 352 |
349 350 239 351
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 [,] j ) ) |
| 353 |
19
|
a1i |
|- ( j e. ( 0 ... M ) -> _e e. CC ) |
| 354 |
205
|
recnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
| 355 |
354
|
negcld |
|- ( j e. ( 0 ... M ) -> -u j e. CC ) |
| 356 |
353 355
|
cxpcld |
|- ( j e. ( 0 ... M ) -> ( _e ^c -u j ) e. CC ) |
| 357 |
356
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c -u j ) e. CC ) |
| 358 |
121
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> G : RR --> CC ) |
| 359 |
358 206
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) e. CC ) |
| 360 |
357 359
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) |
| 361 |
360
|
negcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) |
| 362 |
13 348 352 361
|
fvmptd3 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` j ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
| 363 |
13
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
| 364 |
|
negeq |
|- ( x = 0 -> -u x = -u 0 ) |
| 365 |
364
|
oveq2d |
|- ( x = 0 -> ( _e ^c -u x ) = ( _e ^c -u 0 ) ) |
| 366 |
|
neg0 |
|- -u 0 = 0 |
| 367 |
366
|
oveq2i |
|- ( _e ^c -u 0 ) = ( _e ^c 0 ) |
| 368 |
|
cxp0 |
|- ( _e e. CC -> ( _e ^c 0 ) = 1 ) |
| 369 |
19 368
|
ax-mp |
|- ( _e ^c 0 ) = 1 |
| 370 |
367 369
|
eqtri |
|- ( _e ^c -u 0 ) = 1 |
| 371 |
365 370
|
eqtrdi |
|- ( x = 0 -> ( _e ^c -u x ) = 1 ) |
| 372 |
|
fveq2 |
|- ( x = 0 -> ( G ` x ) = ( G ` 0 ) ) |
| 373 |
371 372
|
oveq12d |
|- ( x = 0 -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( 1 x. ( G ` 0 ) ) ) |
| 374 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 375 |
121 374
|
ffvelcdmd |
|- ( ph -> ( G ` 0 ) e. CC ) |
| 376 |
375
|
mullidd |
|- ( ph -> ( 1 x. ( G ` 0 ) ) = ( G ` 0 ) ) |
| 377 |
373 376
|
sylan9eqr |
|- ( ( ph /\ x = 0 ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( G ` 0 ) ) |
| 378 |
377
|
negeqd |
|- ( ( ph /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) |
| 379 |
378
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) |
| 380 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> 0 e. ( 0 [,] j ) ) |
| 381 |
349 350 239 380
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ( 0 [,] j ) ) |
| 382 |
375
|
negcld |
|- ( ph -> -u ( G ` 0 ) e. CC ) |
| 383 |
382
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( G ` 0 ) e. CC ) |
| 384 |
363 379 381 383
|
fvmptd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` 0 ) = -u ( G ` 0 ) ) |
| 385 |
362 384
|
oveq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) ) |
| 386 |
375
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` 0 ) e. CC ) |
| 387 |
361 386
|
subnegd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) ) |
| 388 |
361 386
|
addcomd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
| 389 |
386 360
|
negsubd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
| 390 |
388 389
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
| 391 |
385 387 390
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
| 392 |
237 343 391
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
| 393 |
392
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
| 394 |
31
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> Q e. ( Poly ` ZZ ) ) |
| 395 |
|
0zd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ZZ ) |
| 396 |
3
|
coef2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) |
| 397 |
394 395 396
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) |
| 398 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
| 399 |
398
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
| 400 |
397 399
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) |
| 401 |
400
|
zcnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) |
| 402 |
353 354
|
cxpcld |
|- ( j e. ( 0 ... M ) -> ( _e ^c j ) e. CC ) |
| 403 |
402
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) |
| 404 |
401 403
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) |
| 405 |
404 386 360
|
subdid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
| 406 |
393 405
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
| 407 |
406
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
| 408 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 409 |
404 386
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) e. CC ) |
| 410 |
404 360
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) e. CC ) |
| 411 |
408 409 410
|
fsumsub |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
| 412 |
2
|
eqcomd |
|- ( ph -> 0 = ( Q ` _e ) ) |
| 413 |
3 4
|
coeid2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ _e e. CC ) -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) |
| 414 |
31 19 413
|
sylancl |
|- ( ph -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) |
| 415 |
|
cxpexp |
|- ( ( _e e. CC /\ j e. NN0 ) -> ( _e ^c j ) = ( _e ^ j ) ) |
| 416 |
353 398 415
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( _e ^c j ) = ( _e ^ j ) ) |
| 417 |
416
|
eqcomd |
|- ( j e. ( 0 ... M ) -> ( _e ^ j ) = ( _e ^c j ) ) |
| 418 |
417
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) |
| 419 |
418
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) |
| 420 |
419
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) |
| 421 |
412 414 420
|
3eqtrd |
|- ( ph -> 0 = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) |
| 422 |
421
|
oveq1d |
|- ( ph -> ( 0 x. ( G ` 0 ) ) = ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) |
| 423 |
375
|
mul02d |
|- ( ph -> ( 0 x. ( G ` 0 ) ) = 0 ) |
| 424 |
408 375 404
|
fsummulc1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) |
| 425 |
422 423 424
|
3eqtr3rd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = 0 ) |
| 426 |
|
fveq2 |
|- ( x = j -> ( ( ( RR Dn F ) ` i ) ` x ) = ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 427 |
426
|
sumeq2sdv |
|- ( x = j -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 428 |
|
fzfid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... R ) e. Fin ) |
| 429 |
38
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 430 |
206
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> j e. RR ) |
| 431 |
429 430
|
ffvelcdmd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
| 432 |
428 431
|
fsumcl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
| 433 |
12 427 206 432
|
fvmptd3 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 434 |
433
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) = ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 435 |
434
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) |
| 436 |
357 432
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) |
| 437 |
401 403 436
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) ) |
| 438 |
369
|
eqcomi |
|- 1 = ( _e ^c 0 ) |
| 439 |
438
|
a1i |
|- ( j e. ( 0 ... M ) -> 1 = ( _e ^c 0 ) ) |
| 440 |
354
|
negidd |
|- ( j e. ( 0 ... M ) -> ( j + -u j ) = 0 ) |
| 441 |
440
|
eqcomd |
|- ( j e. ( 0 ... M ) -> 0 = ( j + -u j ) ) |
| 442 |
441
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( _e ^c 0 ) = ( _e ^c ( j + -u j ) ) ) |
| 443 |
57 58
|
gtneii |
|- _e =/= 0 |
| 444 |
443
|
a1i |
|- ( j e. ( 0 ... M ) -> _e =/= 0 ) |
| 445 |
353 444 354 355
|
cxpaddd |
|- ( j e. ( 0 ... M ) -> ( _e ^c ( j + -u j ) ) = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) |
| 446 |
439 442 445
|
3eqtrd |
|- ( j e. ( 0 ... M ) -> 1 = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) |
| 447 |
446
|
oveq1d |
|- ( j e. ( 0 ... M ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 448 |
447
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 449 |
432
|
mullidd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 450 |
403 357 432
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) |
| 451 |
448 449 450
|
3eqtr3rd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 452 |
451
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 453 |
428 401 431
|
fsummulc2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 454 |
452 453
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 455 |
435 437 454
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 456 |
455
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 457 |
|
vex |
|- j e. _V |
| 458 |
|
vex |
|- i e. _V |
| 459 |
457 458
|
op1std |
|- ( k = <. j , i >. -> ( 1st ` k ) = j ) |
| 460 |
459
|
fveq2d |
|- ( k = <. j , i >. -> ( A ` ( 1st ` k ) ) = ( A ` j ) ) |
| 461 |
457 458
|
op2ndd |
|- ( k = <. j , i >. -> ( 2nd ` k ) = i ) |
| 462 |
461
|
fveq2d |
|- ( k = <. j , i >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` i ) ) |
| 463 |
462 459
|
fveq12d |
|- ( k = <. j , i >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` i ) ` j ) ) |
| 464 |
460 463
|
oveq12d |
|- ( k = <. j , i >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
| 465 |
|
fzfid |
|- ( ph -> ( 0 ... R ) e. Fin ) |
| 466 |
401
|
adantrr |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( A ` j ) e. CC ) |
| 467 |
431
|
anasss |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
| 468 |
466 467
|
mulcld |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) |
| 469 |
464 408 465 468
|
fsumxp |
|- ( ph -> sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 470 |
456 469
|
eqtrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 471 |
425 470
|
oveq12d |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) |
| 472 |
|
df-neg |
|- -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 473 |
472
|
eqcomi |
|- ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) |
| 474 |
473
|
a1i |
|- ( ph -> ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 475 |
411 471 474
|
3eqtrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 476 |
14 407 475
|
3eqtrd |
|- ( ph -> L = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
| 477 |
476
|
oveq1d |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |