Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem47.q |
|- ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
2 |
|
etransclem47.qe0 |
|- ( ph -> ( Q ` _e ) = 0 ) |
3 |
|
etransclem47.a |
|- A = ( coeff ` Q ) |
4 |
|
etransclem47.a0 |
|- ( ph -> ( A ` 0 ) =/= 0 ) |
5 |
|
etransclem47.m |
|- M = ( deg ` Q ) |
6 |
|
etransclem47.p |
|- ( ph -> P e. Prime ) |
7 |
|
etransclem47.ap |
|- ( ph -> ( abs ` ( A ` 0 ) ) < P ) |
8 |
|
etransclem47.mp |
|- ( ph -> ( ! ` M ) < P ) |
9 |
|
etransclem47.9 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) |
10 |
|
etransclem47.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
11 |
|
etransclem47.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
12 |
|
etransclem47.k |
|- K = ( L / ( ! ` ( P - 1 ) ) ) |
13 |
12
|
a1i |
|- ( ph -> K = ( L / ( ! ` ( P - 1 ) ) ) ) |
14 |
|
ssid |
|- RR C_ RR |
15 |
14
|
a1i |
|- ( ph -> RR C_ RR ) |
16 |
|
reelprrecn |
|- RR e. { RR , CC } |
17 |
16
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
18 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
19 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
20 |
19
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
21 |
18 20
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
21
|
a1i |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
23 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
24 |
6 23
|
syl |
|- ( ph -> P e. NN ) |
25 |
|
eqid |
|- ( ( M x. P ) + ( P - 1 ) ) = ( ( M x. P ) + ( P - 1 ) ) |
26 |
|
fveq2 |
|- ( y = x -> ( ( ( RR Dn F ) ` i ) ` y ) = ( ( ( RR Dn F ) ` i ) ` x ) ) |
27 |
26
|
sumeq2sdv |
|- ( y = x -> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) = sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
28 |
27
|
cbvmptv |
|- ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) = ( x e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
29 |
|
negeq |
|- ( z = x -> -u z = -u x ) |
30 |
29
|
oveq2d |
|- ( z = x -> ( _e ^c -u z ) = ( _e ^c -u x ) ) |
31 |
|
fveq2 |
|- ( z = x -> ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) = ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) |
32 |
30 31
|
oveq12d |
|- ( z = x -> ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
33 |
32
|
negeqd |
|- ( z = x -> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
34 |
33
|
cbvmptv |
|- ( z e. ( 0 [,] j ) |-> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) ) = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
35 |
1 2 3 5 15 17 22 24 10 11 25 28 34
|
etransclem46 |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
36 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
37 |
|
fzfid |
|- ( ph -> ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) |
38 |
|
xpfi |
|- ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
39 |
36 37 38
|
syl2anc |
|- ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
40 |
1
|
eldifad |
|- ( ph -> Q e. ( Poly ` ZZ ) ) |
41 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
42 |
3
|
coef2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) |
43 |
40 41 42
|
syl2anc |
|- ( ph -> A : NN0 --> ZZ ) |
44 |
43
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) |
45 |
|
xp1st |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
46 |
|
elfznn0 |
|- ( ( 1st ` k ) e. ( 0 ... M ) -> ( 1st ` k ) e. NN0 ) |
47 |
45 46
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
48 |
47
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
49 |
44 48
|
ffvelrnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
50 |
49
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
51 |
16
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) |
52 |
21
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
53 |
24
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) |
54 |
|
dgrcl |
|- ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) |
55 |
40 54
|
syl |
|- ( ph -> ( deg ` Q ) e. NN0 ) |
56 |
5 55
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
57 |
56
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) |
58 |
|
xp2nd |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
59 |
|
elfznn0 |
|- ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) |
60 |
58 59
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
61 |
60
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
62 |
51 52 53 57 10 61
|
etransclem33 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( RR Dn F ) ` ( 2nd ` k ) ) : RR --> CC ) |
63 |
48
|
nn0red |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) |
64 |
62 63
|
ffvelrnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) |
65 |
50 64
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
66 |
39 65
|
fsumcl |
|- ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
67 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
68 |
24 67
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
69 |
68
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
70 |
69
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
71 |
69
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
72 |
66 70 71
|
divnegd |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
73 |
72
|
eqcomd |
|- ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
74 |
13 35 73
|
3eqtrd |
|- ( ph -> K = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
75 |
|
eqid |
|- ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) |
76 |
24 56 10 43 75
|
etransclem45 |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
77 |
76
|
znegcld |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
78 |
74 77
|
eqeltrd |
|- ( ph -> K e. ZZ ) |
79 |
12 35
|
eqtrid |
|- ( ph -> K = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
80 |
66 70 71
|
divcld |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. CC ) |
81 |
43 4 56 6 7 8 10 75
|
etransclem44 |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
82 |
80 81
|
negne0d |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
83 |
73 82
|
eqnetrd |
|- ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
84 |
79 83
|
eqnetrd |
|- ( ph -> K =/= 0 ) |
85 |
|
eldifsni |
|- ( Q e. ( ( Poly ` ZZ ) \ { 0p } ) -> Q =/= 0p ) |
86 |
1 85
|
syl |
|- ( ph -> Q =/= 0p ) |
87 |
|
ere |
|- _e e. RR |
88 |
87
|
recni |
|- _e e. CC |
89 |
88
|
a1i |
|- ( ph -> _e e. CC ) |
90 |
|
dgrnznn |
|- ( ( ( Q e. ( Poly ` ZZ ) /\ Q =/= 0p ) /\ ( _e e. CC /\ ( Q ` _e ) = 0 ) ) -> ( deg ` Q ) e. NN ) |
91 |
40 86 89 2 90
|
syl22anc |
|- ( ph -> ( deg ` Q ) e. NN ) |
92 |
5 91
|
eqeltrid |
|- ( ph -> M e. NN ) |
93 |
43 11 12 24 92 10 9
|
etransclem23 |
|- ( ph -> ( abs ` K ) < 1 ) |
94 |
|
neeq1 |
|- ( k = K -> ( k =/= 0 <-> K =/= 0 ) ) |
95 |
|
fveq2 |
|- ( k = K -> ( abs ` k ) = ( abs ` K ) ) |
96 |
95
|
breq1d |
|- ( k = K -> ( ( abs ` k ) < 1 <-> ( abs ` K ) < 1 ) ) |
97 |
94 96
|
anbi12d |
|- ( k = K -> ( ( k =/= 0 /\ ( abs ` k ) < 1 ) <-> ( K =/= 0 /\ ( abs ` K ) < 1 ) ) ) |
98 |
97
|
rspcev |
|- ( ( K e. ZZ /\ ( K =/= 0 /\ ( abs ` K ) < 1 ) ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
99 |
78 84 93 98
|
syl12anc |
|- ( ph -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |