| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem47.q |
|- ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
| 2 |
|
etransclem47.qe0 |
|- ( ph -> ( Q ` _e ) = 0 ) |
| 3 |
|
etransclem47.a |
|- A = ( coeff ` Q ) |
| 4 |
|
etransclem47.a0 |
|- ( ph -> ( A ` 0 ) =/= 0 ) |
| 5 |
|
etransclem47.m |
|- M = ( deg ` Q ) |
| 6 |
|
etransclem47.p |
|- ( ph -> P e. Prime ) |
| 7 |
|
etransclem47.ap |
|- ( ph -> ( abs ` ( A ` 0 ) ) < P ) |
| 8 |
|
etransclem47.mp |
|- ( ph -> ( ! ` M ) < P ) |
| 9 |
|
etransclem47.9 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) |
| 10 |
|
etransclem47.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 11 |
|
etransclem47.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
| 12 |
|
etransclem47.k |
|- K = ( L / ( ! ` ( P - 1 ) ) ) |
| 13 |
12
|
a1i |
|- ( ph -> K = ( L / ( ! ` ( P - 1 ) ) ) ) |
| 14 |
|
ssid |
|- RR C_ RR |
| 15 |
14
|
a1i |
|- ( ph -> RR C_ RR ) |
| 16 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 17 |
16
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 18 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 19 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 20 |
18 19
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 21 |
20
|
a1i |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 22 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 23 |
6 22
|
syl |
|- ( ph -> P e. NN ) |
| 24 |
|
eqid |
|- ( ( M x. P ) + ( P - 1 ) ) = ( ( M x. P ) + ( P - 1 ) ) |
| 25 |
|
fveq2 |
|- ( y = x -> ( ( ( RR Dn F ) ` i ) ` y ) = ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 26 |
25
|
sumeq2sdv |
|- ( y = x -> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) = sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 27 |
26
|
cbvmptv |
|- ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) = ( x e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 28 |
|
negeq |
|- ( z = x -> -u z = -u x ) |
| 29 |
28
|
oveq2d |
|- ( z = x -> ( _e ^c -u z ) = ( _e ^c -u x ) ) |
| 30 |
|
fveq2 |
|- ( z = x -> ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) = ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) |
| 31 |
29 30
|
oveq12d |
|- ( z = x -> ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
| 32 |
31
|
negeqd |
|- ( z = x -> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
| 33 |
32
|
cbvmptv |
|- ( z e. ( 0 [,] j ) |-> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) ) = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) |
| 34 |
1 2 3 5 15 17 21 23 10 11 24 27 33
|
etransclem46 |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 35 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 36 |
|
fzfid |
|- ( ph -> ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) |
| 37 |
|
xpfi |
|- ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
| 38 |
35 36 37
|
syl2anc |
|- ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
| 39 |
1
|
eldifad |
|- ( ph -> Q e. ( Poly ` ZZ ) ) |
| 40 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 41 |
3
|
coef2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) |
| 42 |
39 40 41
|
syl2anc |
|- ( ph -> A : NN0 --> ZZ ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) |
| 44 |
|
xp1st |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
| 45 |
|
elfznn0 |
|- ( ( 1st ` k ) e. ( 0 ... M ) -> ( 1st ` k ) e. NN0 ) |
| 46 |
44 45
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
| 47 |
46
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
| 48 |
43 47
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
| 49 |
48
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
| 50 |
16
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) |
| 51 |
20
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 52 |
23
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) |
| 53 |
|
dgrcl |
|- ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) |
| 54 |
39 53
|
syl |
|- ( ph -> ( deg ` Q ) e. NN0 ) |
| 55 |
5 54
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) |
| 57 |
|
xp2nd |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 58 |
|
elfznn0 |
|- ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 59 |
57 58
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 61 |
50 51 52 56 10 60
|
etransclem33 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( RR Dn F ) ` ( 2nd ` k ) ) : RR --> CC ) |
| 62 |
47
|
nn0red |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) |
| 63 |
61 62
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) |
| 64 |
49 63
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 65 |
38 64
|
fsumcl |
|- ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 66 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 67 |
23 66
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 68 |
67
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 69 |
68
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
| 70 |
68
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 71 |
65 69 70
|
divnegd |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 72 |
71
|
eqcomd |
|- ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 73 |
13 34 72
|
3eqtrd |
|- ( ph -> K = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 74 |
|
eqid |
|- ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) |
| 75 |
23 55 10 42 74
|
etransclem45 |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 76 |
75
|
znegcld |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 77 |
73 76
|
eqeltrd |
|- ( ph -> K e. ZZ ) |
| 78 |
12 34
|
eqtrid |
|- ( ph -> K = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 79 |
65 69 70
|
divcld |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. CC ) |
| 80 |
42 4 55 6 7 8 10 74
|
etransclem44 |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
| 81 |
79 80
|
negne0d |
|- ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
| 82 |
72 81
|
eqnetrd |
|- ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) |
| 83 |
78 82
|
eqnetrd |
|- ( ph -> K =/= 0 ) |
| 84 |
|
eldifsni |
|- ( Q e. ( ( Poly ` ZZ ) \ { 0p } ) -> Q =/= 0p ) |
| 85 |
1 84
|
syl |
|- ( ph -> Q =/= 0p ) |
| 86 |
|
ere |
|- _e e. RR |
| 87 |
86
|
recni |
|- _e e. CC |
| 88 |
87
|
a1i |
|- ( ph -> _e e. CC ) |
| 89 |
|
dgrnznn |
|- ( ( ( Q e. ( Poly ` ZZ ) /\ Q =/= 0p ) /\ ( _e e. CC /\ ( Q ` _e ) = 0 ) ) -> ( deg ` Q ) e. NN ) |
| 90 |
39 85 88 2 89
|
syl22anc |
|- ( ph -> ( deg ` Q ) e. NN ) |
| 91 |
5 90
|
eqeltrid |
|- ( ph -> M e. NN ) |
| 92 |
42 11 12 23 91 10 9
|
etransclem23 |
|- ( ph -> ( abs ` K ) < 1 ) |
| 93 |
|
neeq1 |
|- ( k = K -> ( k =/= 0 <-> K =/= 0 ) ) |
| 94 |
|
fveq2 |
|- ( k = K -> ( abs ` k ) = ( abs ` K ) ) |
| 95 |
94
|
breq1d |
|- ( k = K -> ( ( abs ` k ) < 1 <-> ( abs ` K ) < 1 ) ) |
| 96 |
93 95
|
anbi12d |
|- ( k = K -> ( ( k =/= 0 /\ ( abs ` k ) < 1 ) <-> ( K =/= 0 /\ ( abs ` K ) < 1 ) ) ) |
| 97 |
96
|
rspcev |
|- ( ( K e. ZZ /\ ( K =/= 0 /\ ( abs ` K ) < 1 ) ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
| 98 |
77 83 92 97
|
syl12anc |
|- ( ph -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |