| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem47.q |  |-  ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 2 |  | etransclem47.qe0 |  |-  ( ph -> ( Q ` _e ) = 0 ) | 
						
							| 3 |  | etransclem47.a |  |-  A = ( coeff ` Q ) | 
						
							| 4 |  | etransclem47.a0 |  |-  ( ph -> ( A ` 0 ) =/= 0 ) | 
						
							| 5 |  | etransclem47.m |  |-  M = ( deg ` Q ) | 
						
							| 6 |  | etransclem47.p |  |-  ( ph -> P e. Prime ) | 
						
							| 7 |  | etransclem47.ap |  |-  ( ph -> ( abs ` ( A ` 0 ) ) < P ) | 
						
							| 8 |  | etransclem47.mp |  |-  ( ph -> ( ! ` M ) < P ) | 
						
							| 9 |  | etransclem47.9 |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) | 
						
							| 10 |  | etransclem47.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 11 |  | etransclem47.l |  |-  L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) | 
						
							| 12 |  | etransclem47.k |  |-  K = ( L / ( ! ` ( P - 1 ) ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> K = ( L / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 14 |  | ssid |  |-  RR C_ RR | 
						
							| 15 | 14 | a1i |  |-  ( ph -> RR C_ RR ) | 
						
							| 16 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 17 | 16 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 18 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 19 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 20 | 18 19 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 21 | 20 | a1i |  |-  ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 22 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 23 | 6 22 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 24 |  | eqid |  |-  ( ( M x. P ) + ( P - 1 ) ) = ( ( M x. P ) + ( P - 1 ) ) | 
						
							| 25 |  | fveq2 |  |-  ( y = x -> ( ( ( RR Dn F ) ` i ) ` y ) = ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 26 | 25 | sumeq2sdv |  |-  ( y = x -> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) = sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 27 | 26 | cbvmptv |  |-  ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) = ( x e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 28 |  | negeq |  |-  ( z = x -> -u z = -u x ) | 
						
							| 29 | 28 | oveq2d |  |-  ( z = x -> ( _e ^c -u z ) = ( _e ^c -u x ) ) | 
						
							| 30 |  | fveq2 |  |-  ( z = x -> ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) = ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) | 
						
							| 31 | 29 30 | oveq12d |  |-  ( z = x -> ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) | 
						
							| 32 | 31 | negeqd |  |-  ( z = x -> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) = -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) | 
						
							| 33 | 32 | cbvmptv |  |-  ( z e. ( 0 [,] j ) |-> -u ( ( _e ^c -u z ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` z ) ) ) = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( ( y e. RR |-> sum_ i e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ( ( ( RR Dn F ) ` i ) ` y ) ) ` x ) ) ) | 
						
							| 34 | 1 2 3 5 15 17 21 23 10 11 24 27 33 | etransclem46 |  |-  ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 35 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 36 |  | fzfid |  |-  ( ph -> ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) | 
						
							| 37 |  | xpfi |  |-  ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) | 
						
							| 38 | 35 36 37 | syl2anc |  |-  ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) | 
						
							| 39 | 1 | eldifad |  |-  ( ph -> Q e. ( Poly ` ZZ ) ) | 
						
							| 40 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 41 | 3 | coef2 |  |-  ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) | 
						
							| 42 | 39 40 41 | syl2anc |  |-  ( ph -> A : NN0 --> ZZ ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) | 
						
							| 44 |  | xp1st |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) | 
						
							| 45 |  | elfznn0 |  |-  ( ( 1st ` k ) e. ( 0 ... M ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 46 | 44 45 | syl |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 48 | 43 47 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 49 | 48 | zcnd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) | 
						
							| 50 | 16 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) | 
						
							| 51 | 20 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 52 | 23 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) | 
						
							| 53 |  | dgrcl |  |-  ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) | 
						
							| 54 | 39 53 | syl |  |-  ( ph -> ( deg ` Q ) e. NN0 ) | 
						
							| 55 | 5 54 | eqeltrid |  |-  ( ph -> M e. NN0 ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) | 
						
							| 57 |  | xp2nd |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 58 |  | elfznn0 |  |-  ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 59 | 57 58 | syl |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 60 | 59 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 61 | 50 51 52 56 10 60 | etransclem33 |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( RR Dn F ) ` ( 2nd ` k ) ) : RR --> CC ) | 
						
							| 62 | 47 | nn0red |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) | 
						
							| 63 | 61 62 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) | 
						
							| 64 | 49 63 | mulcld |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 65 | 38 64 | fsumcl |  |-  ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 66 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 67 | 23 66 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 68 | 67 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 69 | 68 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 70 | 68 | nnne0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 71 | 65 69 70 | divnegd |  |-  ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 72 | 71 | eqcomd |  |-  ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 73 | 13 34 72 | 3eqtrd |  |-  ( ph -> K = -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 74 |  | eqid |  |-  ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) | 
						
							| 75 | 23 55 10 42 74 | etransclem45 |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 76 | 75 | znegcld |  |-  ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 77 | 73 76 | eqeltrd |  |-  ( ph -> K e. ZZ ) | 
						
							| 78 | 12 34 | eqtrid |  |-  ( ph -> K = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 79 | 65 69 70 | divcld |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. CC ) | 
						
							| 80 | 42 4 55 6 7 8 10 74 | etransclem44 |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) | 
						
							| 81 | 79 80 | negne0d |  |-  ( ph -> -u ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) | 
						
							| 82 | 72 81 | eqnetrd |  |-  ( ph -> ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) =/= 0 ) | 
						
							| 83 | 78 82 | eqnetrd |  |-  ( ph -> K =/= 0 ) | 
						
							| 84 |  | eldifsni |  |-  ( Q e. ( ( Poly ` ZZ ) \ { 0p } ) -> Q =/= 0p ) | 
						
							| 85 | 1 84 | syl |  |-  ( ph -> Q =/= 0p ) | 
						
							| 86 |  | ere |  |-  _e e. RR | 
						
							| 87 | 86 | recni |  |-  _e e. CC | 
						
							| 88 | 87 | a1i |  |-  ( ph -> _e e. CC ) | 
						
							| 89 |  | dgrnznn |  |-  ( ( ( Q e. ( Poly ` ZZ ) /\ Q =/= 0p ) /\ ( _e e. CC /\ ( Q ` _e ) = 0 ) ) -> ( deg ` Q ) e. NN ) | 
						
							| 90 | 39 85 88 2 89 | syl22anc |  |-  ( ph -> ( deg ` Q ) e. NN ) | 
						
							| 91 | 5 90 | eqeltrid |  |-  ( ph -> M e. NN ) | 
						
							| 92 | 42 11 12 23 91 10 9 | etransclem23 |  |-  ( ph -> ( abs ` K ) < 1 ) | 
						
							| 93 |  | neeq1 |  |-  ( k = K -> ( k =/= 0 <-> K =/= 0 ) ) | 
						
							| 94 |  | fveq2 |  |-  ( k = K -> ( abs ` k ) = ( abs ` K ) ) | 
						
							| 95 | 94 | breq1d |  |-  ( k = K -> ( ( abs ` k ) < 1 <-> ( abs ` K ) < 1 ) ) | 
						
							| 96 | 93 95 | anbi12d |  |-  ( k = K -> ( ( k =/= 0 /\ ( abs ` k ) < 1 ) <-> ( K =/= 0 /\ ( abs ` K ) < 1 ) ) ) | 
						
							| 97 | 96 | rspcev |  |-  ( ( K e. ZZ /\ ( K =/= 0 /\ ( abs ` K ) < 1 ) ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 98 | 77 83 92 97 | syl12anc |  |-  ( ph -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |