| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem45.p |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem45.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
etransclem45.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 4 |
|
etransclem45.a |
|- ( ph -> A : NN0 --> ZZ ) |
| 5 |
|
etransclem45.k |
|- K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) |
| 6 |
|
fzfi |
|- ( 0 ... M ) e. Fin |
| 7 |
|
fzfi |
|- ( 0 ... R ) e. Fin |
| 8 |
|
xpfi |
|- ( ( ( 0 ... M ) e. Fin /\ ( 0 ... R ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin ) |
| 9 |
6 7 8
|
mp2an |
|- ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin |
| 10 |
9
|
a1i |
|- ( ph -> ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin ) |
| 11 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 13 |
12
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 14 |
13
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> A : NN0 --> ZZ ) |
| 16 |
|
xp1st |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
| 17 |
|
elfznn0 |
|- ( ( 1st ` k ) e. ( 0 ... M ) -> ( 1st ` k ) e. NN0 ) |
| 18 |
16 17
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 1st ` k ) e. NN0 ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. NN0 ) |
| 20 |
15 19
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
| 21 |
20
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
| 22 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 23 |
22
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> RR e. { RR , CC } ) |
| 24 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 25 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 26 |
24 25
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 27 |
26
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 28 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> P e. NN ) |
| 29 |
2
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> M e. NN0 ) |
| 30 |
|
xp2nd |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 2nd ` k ) e. ( 0 ... R ) ) |
| 31 |
|
elfznn0 |
|- ( ( 2nd ` k ) e. ( 0 ... R ) -> ( 2nd ` k ) e. NN0 ) |
| 32 |
30 31
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 2nd ` k ) e. NN0 ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 34 |
23 27 28 29 3 33
|
etransclem33 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( RR Dn F ) ` ( 2nd ` k ) ) : RR --> CC ) |
| 35 |
19
|
nn0red |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. RR ) |
| 36 |
34 35
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) |
| 37 |
21 36
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 38 |
13
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 39 |
10 14 37 38
|
fsumdivc |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 40 |
14
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
| 41 |
38
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 42 |
21 36 40 41
|
divassd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 43 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 44 |
|
etransclem11 |
|- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
| 45 |
16
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
| 46 |
23 27 28 29 3 33 43 44 45 35
|
etransclem37 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) |
| 47 |
13
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 49 |
19
|
nn0zd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. ZZ ) |
| 50 |
23 27 28 29 3 33 35 49
|
etransclem42 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) |
| 51 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 52 |
48 41 50 51
|
syl3anc |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 53 |
46 52
|
mpbid |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 54 |
20 53
|
zmulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) |
| 55 |
42 54
|
eqeltrd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 56 |
10 55
|
fsumzcl |
|- ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 57 |
39 56
|
eqeltrd |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 58 |
5 57
|
eqeltrid |
|- ( ph -> K e. ZZ ) |