| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem45.p |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem45.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem45.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 4 |  | etransclem45.a |  |-  ( ph -> A : NN0 --> ZZ ) | 
						
							| 5 |  | etransclem45.k |  |-  K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) | 
						
							| 6 |  | fzfi |  |-  ( 0 ... M ) e. Fin | 
						
							| 7 |  | fzfi |  |-  ( 0 ... R ) e. Fin | 
						
							| 8 |  | xpfi |  |-  ( ( ( 0 ... M ) e. Fin /\ ( 0 ... R ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( ( 0 ... M ) X. ( 0 ... R ) ) e. Fin ) | 
						
							| 11 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 13 | 12 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 14 | 13 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> A : NN0 --> ZZ ) | 
						
							| 16 |  | xp1st |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) | 
						
							| 17 |  | elfznn0 |  |-  ( ( 1st ` k ) e. ( 0 ... M ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 18 | 16 17 | syl |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 20 | 15 19 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 21 | 20 | zcnd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) | 
						
							| 22 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> RR e. { RR , CC } ) | 
						
							| 24 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 25 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 26 | 24 25 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 28 | 1 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> P e. NN ) | 
						
							| 29 | 2 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> M e. NN0 ) | 
						
							| 30 |  | xp2nd |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 2nd ` k ) e. ( 0 ... R ) ) | 
						
							| 31 |  | elfznn0 |  |-  ( ( 2nd ` k ) e. ( 0 ... R ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 32 | 30 31 | syl |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... R ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 34 | 23 27 28 29 3 33 | etransclem33 |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( RR Dn F ) ` ( 2nd ` k ) ) : RR --> CC ) | 
						
							| 35 | 19 | nn0red |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. RR ) | 
						
							| 36 | 34 35 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) | 
						
							| 37 | 21 36 | mulcld |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 38 | 13 | nnne0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 39 | 10 14 37 38 | fsumdivc |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 40 | 14 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 41 | 38 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 42 | 21 36 40 41 | divassd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 43 |  | etransclem5 |  |-  ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 44 |  | etransclem11 |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 45 | 16 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) | 
						
							| 46 | 23 27 28 29 3 33 43 44 45 35 | etransclem37 |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) | 
						
							| 47 | 13 | nnzd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 49 | 19 | nn0zd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( 1st ` k ) e. ZZ ) | 
						
							| 50 | 23 27 28 29 3 33 35 49 | etransclem42 |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 51 |  | dvdsval2 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 52 | 48 41 50 51 | syl3anc |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 53 | 46 52 | mpbid |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 54 | 20 53 | zmulcld |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) | 
						
							| 55 | 42 54 | eqeltrd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 56 | 10 55 | fsumzcl |  |-  ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 57 | 39 56 | eqeltrd |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 58 | 5 57 | eqeltrid |  |-  ( ph -> K e. ZZ ) |