Metamath Proof Explorer


Theorem etransclem47

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem47.q φ Q Poly 0 𝑝
etransclem47.qe0 φ Q e = 0
etransclem47.a A = coeff Q
etransclem47.a0 φ A 0 0
etransclem47.m M = deg Q
etransclem47.p φ P
etransclem47.ap φ A 0 < P
etransclem47.mp φ M ! < P
etransclem47.9 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
etransclem47.f F = x x P 1 j = 1 M x j P
etransclem47.l L = j = 0 M A j e j 0 j e x F x dx
etransclem47.k K = L P 1 !
Assertion etransclem47 φ k k 0 k < 1

Proof

Step Hyp Ref Expression
1 etransclem47.q φ Q Poly 0 𝑝
2 etransclem47.qe0 φ Q e = 0
3 etransclem47.a A = coeff Q
4 etransclem47.a0 φ A 0 0
5 etransclem47.m M = deg Q
6 etransclem47.p φ P
7 etransclem47.ap φ A 0 < P
8 etransclem47.mp φ M ! < P
9 etransclem47.9 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
10 etransclem47.f F = x x P 1 j = 1 M x j P
11 etransclem47.l L = j = 0 M A j e j 0 j e x F x dx
12 etransclem47.k K = L P 1 !
13 12 a1i φ K = L P 1 !
14 ssid
15 14 a1i φ
16 reelprrecn
17 16 a1i φ
18 reopn topGen ran .
19 tgioo4 topGen ran . = TopOpen fld 𝑡
20 18 19 eleqtri TopOpen fld 𝑡
21 20 a1i φ TopOpen fld 𝑡
22 prmnn P P
23 6 22 syl φ P
24 eqid M P + P - 1 = M P + P - 1
25 fveq2 y = x D n F i y = D n F i x
26 25 sumeq2sdv y = x i = 0 M P + P - 1 D n F i y = i = 0 M P + P - 1 D n F i x
27 26 cbvmptv y i = 0 M P + P - 1 D n F i y = x i = 0 M P + P - 1 D n F i x
28 negeq z = x z = x
29 28 oveq2d z = x e z = e x
30 fveq2 z = x y i = 0 M P + P - 1 D n F i y z = y i = 0 M P + P - 1 D n F i y x
31 29 30 oveq12d z = x e z y i = 0 M P + P - 1 D n F i y z = e x y i = 0 M P + P - 1 D n F i y x
32 31 negeqd z = x e z y i = 0 M P + P - 1 D n F i y z = e x y i = 0 M P + P - 1 D n F i y x
33 32 cbvmptv z 0 j e z y i = 0 M P + P - 1 D n F i y z = x 0 j e x y i = 0 M P + P - 1 D n F i y x
34 1 2 3 5 15 17 21 23 10 11 24 27 33 etransclem46 φ L P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
35 fzfid φ 0 M Fin
36 fzfid φ 0 M P + P - 1 Fin
37 xpfi 0 M Fin 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 Fin
38 35 36 37 syl2anc φ 0 M × 0 M P + P - 1 Fin
39 1 eldifad φ Q Poly
40 0zd φ 0
41 3 coef2 Q Poly 0 A : 0
42 39 40 41 syl2anc φ A : 0
43 42 adantr φ k 0 M × 0 M P + P - 1 A : 0
44 xp1st k 0 M × 0 M P + P - 1 1 st k 0 M
45 elfznn0 1 st k 0 M 1 st k 0
46 44 45 syl k 0 M × 0 M P + P - 1 1 st k 0
47 46 adantl φ k 0 M × 0 M P + P - 1 1 st k 0
48 43 47 ffvelcdmd φ k 0 M × 0 M P + P - 1 A 1 st k
49 48 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k
50 16 a1i φ k 0 M × 0 M P + P - 1
51 20 a1i φ k 0 M × 0 M P + P - 1 TopOpen fld 𝑡
52 23 adantr φ k 0 M × 0 M P + P - 1 P
53 dgrcl Q Poly deg Q 0
54 39 53 syl φ deg Q 0
55 5 54 eqeltrid φ M 0
56 55 adantr φ k 0 M × 0 M P + P - 1 M 0
57 xp2nd k 0 M × 0 M P + P - 1 2 nd k 0 M P + P - 1
58 elfznn0 2 nd k 0 M P + P - 1 2 nd k 0
59 57 58 syl k 0 M × 0 M P + P - 1 2 nd k 0
60 59 adantl φ k 0 M × 0 M P + P - 1 2 nd k 0
61 50 51 52 56 10 60 etransclem33 φ k 0 M × 0 M P + P - 1 D n F 2 nd k :
62 47 nn0red φ k 0 M × 0 M P + P - 1 1 st k
63 61 62 ffvelcdmd φ k 0 M × 0 M P + P - 1 D n F 2 nd k 1 st k
64 49 63 mulcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
65 38 64 fsumcl φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
66 nnm1nn0 P P 1 0
67 23 66 syl φ P 1 0
68 67 faccld φ P 1 !
69 68 nncnd φ P 1 !
70 68 nnne0d φ P 1 ! 0
71 65 69 70 divnegd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
72 71 eqcomd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
73 13 34 72 3eqtrd φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
74 eqid k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
75 23 55 10 42 74 etransclem45 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
76 75 znegcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
77 73 76 eqeltrd φ K
78 12 34 eqtrid φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
79 65 69 70 divcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
80 42 4 55 6 7 8 10 74 etransclem44 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
81 79 80 negne0d φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
82 72 81 eqnetrd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
83 78 82 eqnetrd φ K 0
84 eldifsni Q Poly 0 𝑝 Q 0 𝑝
85 1 84 syl φ Q 0 𝑝
86 ere e
87 86 recni e
88 87 a1i φ e
89 dgrnznn Q Poly Q 0 𝑝 e Q e = 0 deg Q
90 39 85 88 2 89 syl22anc φ deg Q
91 5 90 eqeltrid φ M
92 42 11 12 23 91 10 9 etransclem23 φ K < 1
93 neeq1 k = K k 0 K 0
94 fveq2 k = K k = K
95 94 breq1d k = K k < 1 K < 1
96 93 95 anbi12d k = K k 0 k < 1 K 0 K < 1
97 96 rspcev K K 0 K < 1 k k 0 k < 1
98 77 83 92 97 syl12anc φ k k 0 k < 1