Metamath Proof Explorer


Theorem etransclem47

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem47.q φQPoly0𝑝
etransclem47.qe0 φQe=0
etransclem47.a A=coeffQ
etransclem47.a0 φA00
etransclem47.m M=degQ
etransclem47.p φP
etransclem47.ap φA0<P
etransclem47.mp φM!<P
etransclem47.9 φj=0MAjejMMM+1MM+1P1P1!<1
etransclem47.f F=xxP1j=1MxjP
etransclem47.l L=j=0MAjej0jexFxdx
etransclem47.k K=LP1!
Assertion etransclem47 φkk0k<1

Proof

Step Hyp Ref Expression
1 etransclem47.q φQPoly0𝑝
2 etransclem47.qe0 φQe=0
3 etransclem47.a A=coeffQ
4 etransclem47.a0 φA00
5 etransclem47.m M=degQ
6 etransclem47.p φP
7 etransclem47.ap φA0<P
8 etransclem47.mp φM!<P
9 etransclem47.9 φj=0MAjejMMM+1MM+1P1P1!<1
10 etransclem47.f F=xxP1j=1MxjP
11 etransclem47.l L=j=0MAjej0jexFxdx
12 etransclem47.k K=LP1!
13 12 a1i φK=LP1!
14 ssid
15 14 a1i φ
16 reelprrecn
17 16 a1i φ
18 reopn topGenran.
19 eqid TopOpenfld=TopOpenfld
20 19 tgioo2 topGenran.=TopOpenfld𝑡
21 18 20 eleqtri TopOpenfld𝑡
22 21 a1i φTopOpenfld𝑡
23 prmnn PP
24 6 23 syl φP
25 eqid MP+P-1=MP+P-1
26 fveq2 y=xDnFiy=DnFix
27 26 sumeq2sdv y=xi=0MP+P-1DnFiy=i=0MP+P-1DnFix
28 27 cbvmptv yi=0MP+P-1DnFiy=xi=0MP+P-1DnFix
29 negeq z=xz=x
30 29 oveq2d z=xez=ex
31 fveq2 z=xyi=0MP+P-1DnFiyz=yi=0MP+P-1DnFiyx
32 30 31 oveq12d z=xezyi=0MP+P-1DnFiyz=exyi=0MP+P-1DnFiyx
33 32 negeqd z=xezyi=0MP+P-1DnFiyz=exyi=0MP+P-1DnFiyx
34 33 cbvmptv z0jezyi=0MP+P-1DnFiyz=x0jexyi=0MP+P-1DnFiyx
35 1 2 3 5 15 17 22 24 10 11 25 28 34 etransclem46 φLP1!=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
36 fzfid φ0MFin
37 fzfid φ0MP+P-1Fin
38 xpfi 0MFin0MP+P-1Fin0M×0MP+P-1Fin
39 36 37 38 syl2anc φ0M×0MP+P-1Fin
40 1 eldifad φQPoly
41 0zd φ0
42 3 coef2 QPoly0A:0
43 40 41 42 syl2anc φA:0
44 43 adantr φk0M×0MP+P-1A:0
45 xp1st k0M×0MP+P-11stk0M
46 elfznn0 1stk0M1stk0
47 45 46 syl k0M×0MP+P-11stk0
48 47 adantl φk0M×0MP+P-11stk0
49 44 48 ffvelcdmd φk0M×0MP+P-1A1stk
50 49 zcnd φk0M×0MP+P-1A1stk
51 16 a1i φk0M×0MP+P-1
52 21 a1i φk0M×0MP+P-1TopOpenfld𝑡
53 24 adantr φk0M×0MP+P-1P
54 dgrcl QPolydegQ0
55 40 54 syl φdegQ0
56 5 55 eqeltrid φM0
57 56 adantr φk0M×0MP+P-1M0
58 xp2nd k0M×0MP+P-12ndk0MP+P-1
59 elfznn0 2ndk0MP+P-12ndk0
60 58 59 syl k0M×0MP+P-12ndk0
61 60 adantl φk0M×0MP+P-12ndk0
62 51 52 53 57 10 61 etransclem33 φk0M×0MP+P-1DnF2ndk:
63 48 nn0red φk0M×0MP+P-11stk
64 62 63 ffvelcdmd φk0M×0MP+P-1DnF2ndk1stk
65 50 64 mulcld φk0M×0MP+P-1A1stkDnF2ndk1stk
66 39 65 fsumcl φk0M×0MP+P-1A1stkDnF2ndk1stk
67 nnm1nn0 PP10
68 24 67 syl φP10
69 68 faccld φP1!
70 69 nncnd φP1!
71 69 nnne0d φP1!0
72 66 70 71 divnegd φk0M×0MP+P-1A1stkDnF2ndk1stkP1!=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
73 72 eqcomd φk0M×0MP+P-1A1stkDnF2ndk1stkP1!=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
74 13 35 73 3eqtrd φK=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
75 eqid k0M×0MP+P-1A1stkDnF2ndk1stkP1!=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
76 24 56 10 43 75 etransclem45 φk0M×0MP+P-1A1stkDnF2ndk1stkP1!
77 76 znegcld φk0M×0MP+P-1A1stkDnF2ndk1stkP1!
78 74 77 eqeltrd φK
79 12 35 eqtrid φK=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
80 66 70 71 divcld φk0M×0MP+P-1A1stkDnF2ndk1stkP1!
81 43 4 56 6 7 8 10 75 etransclem44 φk0M×0MP+P-1A1stkDnF2ndk1stkP1!0
82 80 81 negne0d φk0M×0MP+P-1A1stkDnF2ndk1stkP1!0
83 73 82 eqnetrd φk0M×0MP+P-1A1stkDnF2ndk1stkP1!0
84 79 83 eqnetrd φK0
85 eldifsni QPoly0𝑝Q0𝑝
86 1 85 syl φQ0𝑝
87 ere e
88 87 recni e
89 88 a1i φe
90 dgrnznn QPolyQ0𝑝eQe=0degQ
91 40 86 89 2 90 syl22anc φdegQ
92 5 91 eqeltrid φM
93 43 11 12 24 92 10 9 etransclem23 φK<1
94 neeq1 k=Kk0K0
95 fveq2 k=Kk=K
96 95 breq1d k=Kk<1K<1
97 94 96 anbi12d k=Kk0k<1K0K<1
98 97 rspcev KK0K<1kk0k<1
99 78 84 93 98 syl12anc φkk0k<1