| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem47.q |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
| 2 |
|
etransclem47.qe0 |
⊢ ( 𝜑 → ( 𝑄 ‘ e ) = 0 ) |
| 3 |
|
etransclem47.a |
⊢ 𝐴 = ( coeff ‘ 𝑄 ) |
| 4 |
|
etransclem47.a0 |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ≠ 0 ) |
| 5 |
|
etransclem47.m |
⊢ 𝑀 = ( deg ‘ 𝑄 ) |
| 6 |
|
etransclem47.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 7 |
|
etransclem47.ap |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑃 ) |
| 8 |
|
etransclem47.mp |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) < 𝑃 ) |
| 9 |
|
etransclem47.9 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) < 1 ) |
| 10 |
|
etransclem47.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 11 |
|
etransclem47.l |
⊢ 𝐿 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) |
| 12 |
|
etransclem47.k |
⊢ 𝐾 = ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 14 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
| 16 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 18 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
| 19 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 20 |
18 19
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 22 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 23 |
6 22
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 24 |
|
eqid |
⊢ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 26 |
25
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑥 → Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) = Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 27 |
26
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 28 |
|
negeq |
⊢ ( 𝑧 = 𝑥 → - 𝑧 = - 𝑥 ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( e ↑𝑐 - 𝑧 ) = ( e ↑𝑐 - 𝑥 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) = ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) |
| 31 |
29 30
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) = ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
| 32 |
31
|
negeqd |
⊢ ( 𝑧 = 𝑥 → - ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) = - ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
| 34 |
1 2 3 5 15 17 21 23 10 11 24 27 33
|
etransclem46 |
⊢ ( 𝜑 → ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 35 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
| 36 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin ) |
| 37 |
|
xpfi |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin ) → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
| 39 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ( Poly ‘ ℤ ) ) |
| 40 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 41 |
3
|
coef2 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → 𝐴 : ℕ0 ⟶ ℤ ) |
| 42 |
39 40 41
|
syl2anc |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
| 44 |
|
xp1st |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
| 45 |
|
elfznn0 |
⊢ ( ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
| 46 |
44 45
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
| 48 |
43 47
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
| 49 |
48
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
| 50 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 51 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 52 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑃 ∈ ℕ ) |
| 53 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
| 54 |
39 53
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
| 55 |
5 54
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑀 ∈ ℕ0 ) |
| 57 |
|
xp2nd |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 58 |
|
elfznn0 |
⊢ ( ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 59 |
57 58
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 61 |
50 51 52 56 10 60
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) : ℝ ⟶ ℂ ) |
| 62 |
47
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℝ ) |
| 63 |
61 62
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
| 64 |
49 63
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 65 |
38 64
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 66 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 67 |
23 66
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 68 |
67
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
| 69 |
68
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
| 70 |
68
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
| 71 |
65 69 70
|
divnegd |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 72 |
71
|
eqcomd |
⊢ ( 𝜑 → ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 73 |
13 34 72
|
3eqtrd |
⊢ ( 𝜑 → 𝐾 = - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 74 |
|
eqid |
⊢ ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
| 75 |
23 55 10 42 74
|
etransclem45 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 76 |
75
|
znegcld |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 77 |
73 76
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 78 |
12 34
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 79 |
65 69 70
|
divcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℂ ) |
| 80 |
42 4 55 6 7 8 10 74
|
etransclem44 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
| 81 |
79 80
|
negne0d |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
| 82 |
72 81
|
eqnetrd |
⊢ ( 𝜑 → ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
| 83 |
78 82
|
eqnetrd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
| 84 |
|
eldifsni |
⊢ ( 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → 𝑄 ≠ 0𝑝 ) |
| 85 |
1 84
|
syl |
⊢ ( 𝜑 → 𝑄 ≠ 0𝑝 ) |
| 86 |
|
ere |
⊢ e ∈ ℝ |
| 87 |
86
|
recni |
⊢ e ∈ ℂ |
| 88 |
87
|
a1i |
⊢ ( 𝜑 → e ∈ ℂ ) |
| 89 |
|
dgrnznn |
⊢ ( ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 𝑄 ≠ 0𝑝 ) ∧ ( e ∈ ℂ ∧ ( 𝑄 ‘ e ) = 0 ) ) → ( deg ‘ 𝑄 ) ∈ ℕ ) |
| 90 |
39 85 88 2 89
|
syl22anc |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ ) |
| 91 |
5 90
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 92 |
42 11 12 23 91 10 9
|
etransclem23 |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) < 1 ) |
| 93 |
|
neeq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ≠ 0 ↔ 𝐾 ≠ 0 ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( abs ‘ 𝑘 ) = ( abs ‘ 𝐾 ) ) |
| 95 |
94
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( abs ‘ 𝑘 ) < 1 ↔ ( abs ‘ 𝐾 ) < 1 ) ) |
| 96 |
93 95
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ↔ ( 𝐾 ≠ 0 ∧ ( abs ‘ 𝐾 ) < 1 ) ) ) |
| 97 |
96
|
rspcev |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ≠ 0 ∧ ( abs ‘ 𝐾 ) < 1 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
| 98 |
77 83 92 97
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |