| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem47.q | ⊢ ( 𝜑  →  𝑄  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 2 |  | etransclem47.qe0 | ⊢ ( 𝜑  →  ( 𝑄 ‘ e )  =  0 ) | 
						
							| 3 |  | etransclem47.a | ⊢ 𝐴  =  ( coeff ‘ 𝑄 ) | 
						
							| 4 |  | etransclem47.a0 | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ≠  0 ) | 
						
							| 5 |  | etransclem47.m | ⊢ 𝑀  =  ( deg ‘ 𝑄 ) | 
						
							| 6 |  | etransclem47.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 7 |  | etransclem47.ap | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  <  𝑃 ) | 
						
							| 8 |  | etransclem47.mp | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  <  𝑃 ) | 
						
							| 9 |  | etransclem47.9 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  <  1 ) | 
						
							| 10 |  | etransclem47.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 11 |  | etransclem47.l | ⊢ 𝐿  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) | 
						
							| 12 |  | etransclem47.k | ⊢ 𝐾  =  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝐾  =  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 14 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ ) | 
						
							| 16 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 18 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 19 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 20 | 18 19 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 22 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 23 | 6 22 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 24 |  | eqid | ⊢ ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  =  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 26 | 25 | sumeq2sdv | ⊢ ( 𝑦  =  𝑥  →  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 )  =  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 27 | 26 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) )  =  ( 𝑥  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 28 |  | negeq | ⊢ ( 𝑧  =  𝑥  →  - 𝑧  =  - 𝑥 ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝑧  =  𝑥  →  ( e ↑𝑐 - 𝑧 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) | 
						
							| 31 | 29 30 | oveq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( e ↑𝑐 - 𝑧 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) )  =  ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) | 
						
							| 32 | 31 | negeqd | ⊢ ( 𝑧  =  𝑥  →  - ( ( e ↑𝑐 - 𝑧 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) )  =  - ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑧  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑧 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 𝑗 )  ↦  - ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ( ( ( ℝ  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) | 
						
							| 34 | 1 2 3 5 15 17 21 23 10 11 24 27 33 | etransclem46 | ⊢ ( 𝜑  →  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 35 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 36 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  ∈  Fin ) | 
						
							| 37 |  | xpfi | ⊢ ( ( ( 0 ... 𝑀 )  ∈  Fin  ∧  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  ∈  Fin )  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( 𝜑  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin ) | 
						
							| 39 | 1 | eldifad | ⊢ ( 𝜑  →  𝑄  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 40 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 41 | 3 | coef2 | ⊢ ( ( 𝑄  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℤ )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 44 |  | xp1st | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 45 |  | elfznn0 | ⊢ ( ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 48 | 43 47 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 49 | 48 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 50 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 51 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 52 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 53 |  | dgrcl | ⊢ ( 𝑄  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 54 | 39 53 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 55 | 5 54 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 57 |  | xp2nd | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 58 |  | elfznn0 | ⊢ ( ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 61 | 50 51 52 56 10 60 | etransclem33 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) : ℝ ⟶ ℂ ) | 
						
							| 62 | 47 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 63 | 61 62 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 64 | 49 63 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 65 | 38 64 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 66 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 67 | 23 66 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 68 | 67 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 69 | 68 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 70 | 68 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 71 | 65 69 70 | divnegd | ⊢ ( 𝜑  →  - ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 72 | 71 | eqcomd | ⊢ ( 𝜑  →  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  - ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 73 | 13 34 72 | 3eqtrd | ⊢ ( 𝜑  →  𝐾  =  - ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 75 | 23 55 10 42 74 | etransclem45 | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 76 | 75 | znegcld | ⊢ ( 𝜑  →  - ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 77 | 73 76 | eqeltrd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 78 | 12 34 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 79 | 65 69 70 | divcld | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℂ ) | 
						
							| 80 | 42 4 55 6 7 8 10 74 | etransclem44 | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ≠  0 ) | 
						
							| 81 | 79 80 | negne0d | ⊢ ( 𝜑  →  - ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ≠  0 ) | 
						
							| 82 | 72 81 | eqnetrd | ⊢ ( 𝜑  →  ( - Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ≠  0 ) | 
						
							| 83 | 78 82 | eqnetrd | ⊢ ( 𝜑  →  𝐾  ≠  0 ) | 
						
							| 84 |  | eldifsni | ⊢ ( 𝑄  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  →  𝑄  ≠  0𝑝 ) | 
						
							| 85 | 1 84 | syl | ⊢ ( 𝜑  →  𝑄  ≠  0𝑝 ) | 
						
							| 86 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 87 | 86 | recni | ⊢ e  ∈  ℂ | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  e  ∈  ℂ ) | 
						
							| 89 |  | dgrnznn | ⊢ ( ( ( 𝑄  ∈  ( Poly ‘ ℤ )  ∧  𝑄  ≠  0𝑝 )  ∧  ( e  ∈  ℂ  ∧  ( 𝑄 ‘ e )  =  0 ) )  →  ( deg ‘ 𝑄 )  ∈  ℕ ) | 
						
							| 90 | 39 85 88 2 89 | syl22anc | ⊢ ( 𝜑  →  ( deg ‘ 𝑄 )  ∈  ℕ ) | 
						
							| 91 | 5 90 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 92 | 42 11 12 23 91 10 9 | etransclem23 | ⊢ ( 𝜑  →  ( abs ‘ 𝐾 )  <  1 ) | 
						
							| 93 |  | neeq1 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑘  ≠  0  ↔  𝐾  ≠  0 ) ) | 
						
							| 94 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( abs ‘ 𝑘 )  =  ( abs ‘ 𝐾 ) ) | 
						
							| 95 | 94 | breq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( abs ‘ 𝑘 )  <  1  ↔  ( abs ‘ 𝐾 )  <  1 ) ) | 
						
							| 96 | 93 95 | anbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 )  ↔  ( 𝐾  ≠  0  ∧  ( abs ‘ 𝐾 )  <  1 ) ) ) | 
						
							| 97 | 96 | rspcev | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ( 𝐾  ≠  0  ∧  ( abs ‘ 𝐾 )  <  1 ) )  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 98 | 77 83 92 97 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) |