| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcncfg.1 |
|- ( ph -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) |
| 2 |
|
df-neg |
|- -u B = ( 0 - B ) |
| 3 |
2
|
a1i |
|- ( ( ph /\ x e. A ) -> -u B = ( 0 - B ) ) |
| 4 |
3
|
mpteq2dva |
|- ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( 0 - B ) ) ) |
| 5 |
|
eqid |
|- ( x e. CC |-> 0 ) = ( x e. CC |-> 0 ) |
| 6 |
|
0cn |
|- 0 e. CC |
| 7 |
|
ssidd |
|- ( 0 e. CC -> CC C_ CC ) |
| 8 |
|
id |
|- ( 0 e. CC -> 0 e. CC ) |
| 9 |
7 8 7
|
constcncfg |
|- ( 0 e. CC -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) |
| 10 |
6 9
|
mp1i |
|- ( ph -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) |
| 11 |
|
cncfrss |
|- ( ( x e. A |-> B ) e. ( A -cn-> CC ) -> A C_ CC ) |
| 12 |
1 11
|
syl |
|- ( ph -> A C_ CC ) |
| 13 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 14 |
6
|
a1i |
|- ( ( ph /\ x e. A ) -> 0 e. CC ) |
| 15 |
5 10 12 13 14
|
cncfmptssg |
|- ( ph -> ( x e. A |-> 0 ) e. ( A -cn-> CC ) ) |
| 16 |
15 1
|
subcncf |
|- ( ph -> ( x e. A |-> ( 0 - B ) ) e. ( A -cn-> CC ) ) |
| 17 |
4 16
|
eqeltrd |
|- ( ph -> ( x e. A |-> -u B ) e. ( A -cn-> CC ) ) |