| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcncfg.1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 2 |  | df-neg | ⊢ - 𝐵  =  ( 0  −  𝐵 ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  =  ( 0  −  𝐵 ) ) | 
						
							| 4 | 3 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  ( 0  −  𝐵 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  0 )  =  ( 𝑥  ∈  ℂ  ↦  0 ) | 
						
							| 6 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 7 |  | ssidd | ⊢ ( 0  ∈  ℂ  →  ℂ  ⊆  ℂ ) | 
						
							| 8 |  | id | ⊢ ( 0  ∈  ℂ  →  0  ∈  ℂ ) | 
						
							| 9 | 7 8 7 | constcncfg | ⊢ ( 0  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  0 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 10 | 6 9 | mp1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  0 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 11 |  | cncfrss | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( 𝐴 –cn→ ℂ )  →  𝐴  ⊆  ℂ ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 13 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 14 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ∈  ℂ ) | 
						
							| 15 | 5 10 12 13 14 | cncfmptssg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  0 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 16 | 15 1 | subcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 0  −  𝐵 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 17 | 4 16 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  ( 𝐴 –cn→ ℂ ) ) |