| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcncfg.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 2 |
|
df-neg |
⊢ - 𝐵 = ( 0 − 𝐵 ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 = ( 0 − 𝐵 ) ) |
| 4 |
3
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ 0 ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
| 6 |
|
0cn |
⊢ 0 ∈ ℂ |
| 7 |
|
ssidd |
⊢ ( 0 ∈ ℂ → ℂ ⊆ ℂ ) |
| 8 |
|
id |
⊢ ( 0 ∈ ℂ → 0 ∈ ℂ ) |
| 9 |
7 8 7
|
constcncfg |
⊢ ( 0 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 10 |
6 9
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 |
|
cncfrss |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) → 𝐴 ⊆ ℂ ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 13 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 14 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℂ ) |
| 15 |
5 10 12 13 14
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 16 |
15 1
|
subcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 17 |
4 16
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |