| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem43.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
etransclem43.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 3 |
|
etransclem43.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 4 |
|
etransclem43.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 5 |
|
etransclem43.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 6 |
|
etransclem43.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 7 |
1 2
|
dvdmsscn |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 8 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑅 ) ∈ Fin ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑃 ∈ ℕ ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑀 ∈ ℕ0 ) |
| 13 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 ) |
| 15 |
9 10 11 12 5 14
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) : 𝑋 ⟶ ℂ ) |
| 16 |
15
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
| 17 |
9 10 11 12 5 14
|
etransclem40 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 18 |
16 17
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 19 |
7 8 18
|
fsumcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 20 |
6 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |