| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem43.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem43.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem43.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem43.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem43.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem43.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 7 | 1 2 | dvdmsscn | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 8 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑅 )  ∈  Fin ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 13 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑅 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 15 | 9 10 11 12 5 14 | etransclem33 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 ) : 𝑋 ⟶ ℂ ) | 
						
							| 16 | 15 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 17 | 9 10 11 12 5 14 | etransclem40 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 18 | 16 17 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑅 ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 19 | 7 8 18 | fsumcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑖  ∈  ( 0 ... 𝑅 ) ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )  ∈  ( 𝑋 –cn→ ℂ ) ) | 
						
							| 20 | 6 19 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑋 –cn→ ℂ ) ) |