| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucalgval.1 |  |-  E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) ) | 
						
							| 2 |  | eucalg.2 |  |-  R = seq 0 ( ( E o. 1st ) , ( NN0 X. { A } ) ) | 
						
							| 3 |  | eucalgcvga.3 |  |-  N = ( 2nd ` A ) | 
						
							| 4 |  | xp2nd |  |-  ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. NN0 ) | 
						
							| 5 | 3 4 | eqeltrid |  |-  ( A e. ( NN0 X. NN0 ) -> N e. NN0 ) | 
						
							| 6 |  | eluznn0 |  |-  ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 |  | 0zd |  |-  ( A e. ( NN0 X. NN0 ) -> 0 e. ZZ ) | 
						
							| 10 |  | id |  |-  ( A e. ( NN0 X. NN0 ) -> A e. ( NN0 X. NN0 ) ) | 
						
							| 11 | 1 | eucalgf |  |-  E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) | 
						
							| 12 | 11 | a1i |  |-  ( A e. ( NN0 X. NN0 ) -> E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) ) | 
						
							| 13 | 8 2 9 10 12 | algrf |  |-  ( A e. ( NN0 X. NN0 ) -> R : NN0 --> ( NN0 X. NN0 ) ) | 
						
							| 14 | 13 | ffvelcdmda |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. NN0 ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) | 
						
							| 15 | 7 14 | syldan |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) | 
						
							| 16 | 15 | fvresd |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = ( 2nd ` ( R ` K ) ) ) | 
						
							| 17 |  | simpl |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> A e. ( NN0 X. NN0 ) ) | 
						
							| 18 |  | fvres |  |-  ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( 2nd ` A ) ) | 
						
							| 19 | 18 3 | eqtr4di |  |-  ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = N ) | 
						
							| 20 | 19 | fveq2d |  |-  ( A e. ( NN0 X. NN0 ) -> ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) = ( ZZ>= ` N ) ) | 
						
							| 21 | 20 | eleq2d |  |-  ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) <-> K e. ( ZZ>= ` N ) ) ) | 
						
							| 22 | 21 | biimpar |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) ) | 
						
							| 23 |  | f2ndres |  |-  ( 2nd |` ( NN0 X. NN0 ) ) : ( NN0 X. NN0 ) --> NN0 | 
						
							| 24 | 1 | eucalglt |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( 2nd ` ( E ` z ) ) =/= 0 -> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) | 
						
							| 25 | 11 | ffvelcdmi |  |-  ( z e. ( NN0 X. NN0 ) -> ( E ` z ) e. ( NN0 X. NN0 ) ) | 
						
							| 26 | 25 | fvresd |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) = ( 2nd ` ( E ` z ) ) ) | 
						
							| 27 | 26 | neeq1d |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 <-> ( 2nd ` ( E ` z ) ) =/= 0 ) ) | 
						
							| 28 |  | fvres |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) = ( 2nd ` z ) ) | 
						
							| 29 | 26 28 | breq12d |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) <-> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) | 
						
							| 30 | 24 27 29 | 3imtr4d |  |-  ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) ) ) | 
						
							| 31 |  | eqid |  |-  ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) | 
						
							| 32 | 11 2 23 30 31 | algcvga |  |-  ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) ) | 
						
							| 33 | 17 22 32 | sylc |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) | 
						
							| 34 | 16 33 | eqtr3d |  |-  ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( 2nd ` ( R ` K ) ) = 0 ) | 
						
							| 35 | 34 | ex |  |-  ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` N ) -> ( 2nd ` ( R ` K ) ) = 0 ) ) |