Metamath Proof Explorer


Theorem eucalg

Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in ApostolNT p. 20.

Upon halting, the 1st member of the final state ( RN ) is equal to the gcd of the values comprising the input state <. M , N >. . This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011) (Proof shortened by Mario Carneiro, 29-May-2014)

Ref Expression
Hypotheses eucalgval.1
|- E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) )
eucalg.2
|- R = seq 0 ( ( E o. 1st ) , ( NN0 X. { A } ) )
eucalg.3
|- A = <. M , N >.
Assertion eucalg
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( 1st ` ( R ` N ) ) = ( M gcd N ) )

Proof

Step Hyp Ref Expression
1 eucalgval.1
 |-  E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) )
2 eucalg.2
 |-  R = seq 0 ( ( E o. 1st ) , ( NN0 X. { A } ) )
3 eucalg.3
 |-  A = <. M , N >.
4 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
5 0zd
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> 0 e. ZZ )
6 opelxpi
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> <. M , N >. e. ( NN0 X. NN0 ) )
7 3 6 eqeltrid
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> A e. ( NN0 X. NN0 ) )
8 1 eucalgf
 |-  E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 )
9 8 a1i
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) )
10 4 2 5 7 9 algrf
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> R : NN0 --> ( NN0 X. NN0 ) )
11 ffvelrn
 |-  ( ( R : NN0 --> ( NN0 X. NN0 ) /\ N e. NN0 ) -> ( R ` N ) e. ( NN0 X. NN0 ) )
12 10 11 sylancom
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` N ) e. ( NN0 X. NN0 ) )
13 1st2nd2
 |-  ( ( R ` N ) e. ( NN0 X. NN0 ) -> ( R ` N ) = <. ( 1st ` ( R ` N ) ) , ( 2nd ` ( R ` N ) ) >. )
14 12 13 syl
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` N ) = <. ( 1st ` ( R ` N ) ) , ( 2nd ` ( R ` N ) ) >. )
15 14 fveq2d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( gcd ` ( R ` N ) ) = ( gcd ` <. ( 1st ` ( R ` N ) ) , ( 2nd ` ( R ` N ) ) >. ) )
16 df-ov
 |-  ( ( 1st ` ( R ` N ) ) gcd ( 2nd ` ( R ` N ) ) ) = ( gcd ` <. ( 1st ` ( R ` N ) ) , ( 2nd ` ( R ` N ) ) >. )
17 15 16 eqtr4di
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( gcd ` ( R ` N ) ) = ( ( 1st ` ( R ` N ) ) gcd ( 2nd ` ( R ` N ) ) ) )
18 3 fveq2i
 |-  ( 2nd ` A ) = ( 2nd ` <. M , N >. )
19 op2ndg
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 2nd ` <. M , N >. ) = N )
20 18 19 syl5eq
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 2nd ` A ) = N )
21 20 fveq2d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` ( 2nd ` A ) ) = ( R ` N ) )
22 21 fveq2d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 2nd ` ( R ` ( 2nd ` A ) ) ) = ( 2nd ` ( R ` N ) ) )
23 xp2nd
 |-  ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. NN0 )
24 23 nn0zd
 |-  ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. ZZ )
25 uzid
 |-  ( ( 2nd ` A ) e. ZZ -> ( 2nd ` A ) e. ( ZZ>= ` ( 2nd ` A ) ) )
26 24 25 syl
 |-  ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. ( ZZ>= ` ( 2nd ` A ) ) )
27 eqid
 |-  ( 2nd ` A ) = ( 2nd ` A )
28 1 2 27 eucalgcvga
 |-  ( A e. ( NN0 X. NN0 ) -> ( ( 2nd ` A ) e. ( ZZ>= ` ( 2nd ` A ) ) -> ( 2nd ` ( R ` ( 2nd ` A ) ) ) = 0 ) )
29 26 28 mpd
 |-  ( A e. ( NN0 X. NN0 ) -> ( 2nd ` ( R ` ( 2nd ` A ) ) ) = 0 )
30 7 29 syl
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 2nd ` ( R ` ( 2nd ` A ) ) ) = 0 )
31 22 30 eqtr3d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 2nd ` ( R ` N ) ) = 0 )
32 31 oveq2d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1st ` ( R ` N ) ) gcd ( 2nd ` ( R ` N ) ) ) = ( ( 1st ` ( R ` N ) ) gcd 0 ) )
33 xp1st
 |-  ( ( R ` N ) e. ( NN0 X. NN0 ) -> ( 1st ` ( R ` N ) ) e. NN0 )
34 nn0gcdid0
 |-  ( ( 1st ` ( R ` N ) ) e. NN0 -> ( ( 1st ` ( R ` N ) ) gcd 0 ) = ( 1st ` ( R ` N ) ) )
35 12 33 34 3syl
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1st ` ( R ` N ) ) gcd 0 ) = ( 1st ` ( R ` N ) ) )
36 17 32 35 3eqtrrd
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 1st ` ( R ` N ) ) = ( gcd ` ( R ` N ) ) )
37 1 eucalginv
 |-  ( z e. ( NN0 X. NN0 ) -> ( gcd ` ( E ` z ) ) = ( gcd ` z ) )
38 8 ffvelrni
 |-  ( z e. ( NN0 X. NN0 ) -> ( E ` z ) e. ( NN0 X. NN0 ) )
39 38 fvresd
 |-  ( z e. ( NN0 X. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) = ( gcd ` ( E ` z ) ) )
40 fvres
 |-  ( z e. ( NN0 X. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` z ) = ( gcd ` z ) )
41 37 39 40 3eqtr4d
 |-  ( z e. ( NN0 X. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) = ( ( gcd |` ( NN0 X. NN0 ) ) ` z ) )
42 2 8 41 alginv
 |-  ( ( A e. ( NN0 X. NN0 ) /\ N e. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` N ) ) = ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` 0 ) ) )
43 7 42 sylancom
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` N ) ) = ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` 0 ) ) )
44 12 fvresd
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` N ) ) = ( gcd ` ( R ` N ) ) )
45 0nn0
 |-  0 e. NN0
46 ffvelrn
 |-  ( ( R : NN0 --> ( NN0 X. NN0 ) /\ 0 e. NN0 ) -> ( R ` 0 ) e. ( NN0 X. NN0 ) )
47 10 45 46 sylancl
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` 0 ) e. ( NN0 X. NN0 ) )
48 47 fvresd
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( gcd |` ( NN0 X. NN0 ) ) ` ( R ` 0 ) ) = ( gcd ` ( R ` 0 ) ) )
49 43 44 48 3eqtr3d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( gcd ` ( R ` N ) ) = ( gcd ` ( R ` 0 ) ) )
50 4 2 5 7 algr0
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` 0 ) = A )
51 50 3 eqtrdi
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( R ` 0 ) = <. M , N >. )
52 51 fveq2d
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( gcd ` ( R ` 0 ) ) = ( gcd ` <. M , N >. ) )
53 df-ov
 |-  ( M gcd N ) = ( gcd ` <. M , N >. )
54 52 53 eqtr4di
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( gcd ` ( R ` 0 ) ) = ( M gcd N ) )
55 36 49 54 3eqtrd
 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( 1st ` ( R ` N ) ) = ( M gcd N ) )