| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eusvnf |
|- ( E! y A. x y = A -> F/_ x A ) |
| 2 |
|
euex |
|- ( E! y A. x y = A -> E. y A. x y = A ) |
| 3 |
|
eqvisset |
|- ( y = A -> A e. _V ) |
| 4 |
3
|
sps |
|- ( A. x y = A -> A e. _V ) |
| 5 |
4
|
exlimiv |
|- ( E. y A. x y = A -> A e. _V ) |
| 6 |
2 5
|
syl |
|- ( E! y A. x y = A -> A e. _V ) |
| 7 |
1 6
|
jca |
|- ( E! y A. x y = A -> ( F/_ x A /\ A e. _V ) ) |
| 8 |
|
isset |
|- ( A e. _V <-> E. y y = A ) |
| 9 |
|
nfcvd |
|- ( F/_ x A -> F/_ x y ) |
| 10 |
|
id |
|- ( F/_ x A -> F/_ x A ) |
| 11 |
9 10
|
nfeqd |
|- ( F/_ x A -> F/ x y = A ) |
| 12 |
11
|
nf5rd |
|- ( F/_ x A -> ( y = A -> A. x y = A ) ) |
| 13 |
12
|
eximdv |
|- ( F/_ x A -> ( E. y y = A -> E. y A. x y = A ) ) |
| 14 |
8 13
|
biimtrid |
|- ( F/_ x A -> ( A e. _V -> E. y A. x y = A ) ) |
| 15 |
14
|
imp |
|- ( ( F/_ x A /\ A e. _V ) -> E. y A. x y = A ) |
| 16 |
|
eusv1 |
|- ( E! y A. x y = A <-> E. y A. x y = A ) |
| 17 |
15 16
|
sylibr |
|- ( ( F/_ x A /\ A e. _V ) -> E! y A. x y = A ) |
| 18 |
7 17
|
impbii |
|- ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |