| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eusvnf | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 2 |  | euex | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 3 |  | eqvisset | ⊢ ( 𝑦  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑦  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 7 | 1 6 | jca | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  →  ( Ⅎ 𝑥 𝐴  ∧  𝐴  ∈  V ) ) | 
						
							| 8 |  | isset | ⊢ ( 𝐴  ∈  V  ↔  ∃ 𝑦 𝑦  =  𝐴 ) | 
						
							| 9 |  | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 10 |  | id | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 11 | 9 10 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 12 | 11 | nf5rd | ⊢ ( Ⅎ 𝑥 𝐴  →  ( 𝑦  =  𝐴  →  ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 13 | 12 | eximdv | ⊢ ( Ⅎ 𝑥 𝐴  →  ( ∃ 𝑦 𝑦  =  𝐴  →  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 14 | 8 13 | biimtrid | ⊢ ( Ⅎ 𝑥 𝐴  →  ( 𝐴  ∈  V  →  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( Ⅎ 𝑥 𝐴  ∧  𝐴  ∈  V )  →  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 16 |  | eusv1 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  ↔  ∃ 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( Ⅎ 𝑥 𝐴  ∧  𝐴  ∈  V )  →  ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴 ) | 
						
							| 18 | 7 17 | impbii | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦  =  𝐴  ↔  ( Ⅎ 𝑥 𝐴  ∧  𝐴  ∈  V ) ) |