Metamath Proof Explorer


Theorem eusvnfb

Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion eusvnfb ∃!yxy=A_xAAV

Proof

Step Hyp Ref Expression
1 eusvnf ∃!yxy=A_xA
2 euex ∃!yxy=Ayxy=A
3 eqvisset y=AAV
4 3 sps xy=AAV
5 4 exlimiv yxy=AAV
6 2 5 syl ∃!yxy=AAV
7 1 6 jca ∃!yxy=A_xAAV
8 isset AVyy=A
9 nfcvd _xA_xy
10 id _xA_xA
11 9 10 nfeqd _xAxy=A
12 11 nf5rd _xAy=Axy=A
13 12 eximdv _xAyy=Ayxy=A
14 8 13 biimtrid _xAAVyxy=A
15 14 imp _xAAVyxy=A
16 eusv1 ∃!yxy=Ayxy=A
17 15 16 sylibr _xAAV∃!yxy=A
18 7 17 impbii ∃!yxy=A_xAAV