Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | eusvnfb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusvnf | |
|
2 | euex | |
|
3 | eqvisset | |
|
4 | 3 | sps | |
5 | 4 | exlimiv | |
6 | 2 5 | syl | |
7 | 1 6 | jca | |
8 | isset | |
|
9 | nfcvd | |
|
10 | id | |
|
11 | 9 10 | nfeqd | |
12 | 11 | nf5rd | |
13 | 12 | eximdv | |
14 | 8 13 | biimtrid | |
15 | 14 | imp | |
16 | eusv1 | |
|
17 | 15 16 | sylibr | |
18 | 7 17 | impbii | |