Metamath Proof Explorer


Theorem eusvnf

Description: Even if x is free in A , it is effectively bound when A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion eusvnf ∃! y x y = A _ x A

Proof

Step Hyp Ref Expression
1 euex ∃! y x y = A y x y = A
2 nfcv _ x z
3 nfcsb1v _ x z / x A
4 3 nfeq2 x y = z / x A
5 csbeq1a x = z A = z / x A
6 5 eqeq2d x = z y = A y = z / x A
7 2 4 6 spcgf z V x y = A y = z / x A
8 7 elv x y = A y = z / x A
9 nfcv _ x w
10 nfcsb1v _ x w / x A
11 10 nfeq2 x y = w / x A
12 csbeq1a x = w A = w / x A
13 12 eqeq2d x = w y = A y = w / x A
14 9 11 13 spcgf w V x y = A y = w / x A
15 14 elv x y = A y = w / x A
16 8 15 eqtr3d x y = A z / x A = w / x A
17 16 alrimivv x y = A z w z / x A = w / x A
18 sbnfc2 _ x A z w z / x A = w / x A
19 17 18 sylibr x y = A _ x A
20 19 exlimiv y x y = A _ x A
21 1 20 syl ∃! y x y = A _ x A