| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1varsrng.q |
|- Q = ( S evalSub1 R ) |
| 2 |
|
evls1varsrng.o |
|- O = ( eval1 ` S ) |
| 3 |
|
evls1varsrng.v |
|- V = ( var1 ` U ) |
| 4 |
|
evls1varsrng.u |
|- U = ( S |`s R ) |
| 5 |
|
evls1varsrng.b |
|- B = ( Base ` S ) |
| 6 |
|
evls1varsrng.s |
|- ( ph -> S e. CRing ) |
| 7 |
|
evls1varsrng.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 8 |
1 3 4 5 6 7
|
evls1var |
|- ( ph -> ( Q ` V ) = ( _I |` B ) ) |
| 9 |
2 5
|
evl1fval1 |
|- O = ( S evalSub1 B ) |
| 10 |
9
|
a1i |
|- ( ph -> O = ( S evalSub1 B ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( O ` V ) = ( ( S evalSub1 B ) ` V ) ) |
| 12 |
3
|
a1i |
|- ( ph -> V = ( var1 ` U ) ) |
| 13 |
|
eqid |
|- ( var1 ` S ) = ( var1 ` S ) |
| 14 |
13 7 4
|
subrgvr1 |
|- ( ph -> ( var1 ` S ) = ( var1 ` U ) ) |
| 15 |
5
|
ressid |
|- ( S e. CRing -> ( S |`s B ) = S ) |
| 16 |
6 15
|
syl |
|- ( ph -> ( S |`s B ) = S ) |
| 17 |
16
|
eqcomd |
|- ( ph -> S = ( S |`s B ) ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( var1 ` S ) = ( var1 ` ( S |`s B ) ) ) |
| 19 |
12 14 18
|
3eqtr2d |
|- ( ph -> V = ( var1 ` ( S |`s B ) ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( ( S evalSub1 B ) ` V ) = ( ( S evalSub1 B ) ` ( var1 ` ( S |`s B ) ) ) ) |
| 21 |
|
eqid |
|- ( S evalSub1 B ) = ( S evalSub1 B ) |
| 22 |
|
eqid |
|- ( var1 ` ( S |`s B ) ) = ( var1 ` ( S |`s B ) ) |
| 23 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
| 24 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
| 25 |
5
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 26 |
6 24 25
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
| 27 |
21 22 23 5 6 26
|
evls1var |
|- ( ph -> ( ( S evalSub1 B ) ` ( var1 ` ( S |`s B ) ) ) = ( _I |` B ) ) |
| 28 |
11 20 27
|
3eqtrrd |
|- ( ph -> ( _I |` B ) = ( O ` V ) ) |
| 29 |
8 28
|
eqtrd |
|- ( ph -> ( Q ` V ) = ( O ` V ) ) |