| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlvvval.q |
|- Q = ( I eval R ) |
| 2 |
|
evlvvval.p |
|- P = ( I mPoly R ) |
| 3 |
|
evlvvval.b |
|- B = ( Base ` P ) |
| 4 |
|
evlvvval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 5 |
|
evlvvval.k |
|- K = ( Base ` R ) |
| 6 |
|
evlvvval.m |
|- M = ( mulGrp ` R ) |
| 7 |
|
evlvvval.w |
|- .^ = ( .g ` M ) |
| 8 |
|
evlvvval.x |
|- .x. = ( .r ` R ) |
| 9 |
|
evlvvval.i |
|- ( ph -> I e. V ) |
| 10 |
|
evlvvval.r |
|- ( ph -> R e. CRing ) |
| 11 |
|
evlvvval.f |
|- ( ph -> F e. B ) |
| 12 |
|
evlvvval.a |
|- ( ph -> A e. ( K ^m I ) ) |
| 13 |
|
eqid |
|- ( ( I evalSub R ) ` ( Base ` R ) ) = ( ( I evalSub R ) ` ( Base ` R ) ) |
| 14 |
|
eqid |
|- ( I mPoly ( R |`s ( Base ` R ) ) ) = ( I mPoly ( R |`s ( Base ` R ) ) ) |
| 15 |
|
eqid |
|- ( R |`s ( Base ` R ) ) = ( R |`s ( Base ` R ) ) |
| 16 |
|
eqid |
|- ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) |
| 17 |
10
|
crngringd |
|- ( ph -> R e. Ring ) |
| 18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 19 |
18
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 20 |
17 19
|
syl |
|- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 21 |
18
|
ressid |
|- ( R e. CRing -> ( R |`s ( Base ` R ) ) = R ) |
| 22 |
10 21
|
syl |
|- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
| 23 |
22
|
oveq2d |
|- ( ph -> ( I mPoly ( R |`s ( Base ` R ) ) ) = ( I mPoly R ) ) |
| 24 |
23 2
|
eqtr4di |
|- ( ph -> ( I mPoly ( R |`s ( Base ` R ) ) ) = P ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = ( Base ` P ) ) |
| 26 |
25 3
|
eqtr4di |
|- ( ph -> ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = B ) |
| 27 |
11 26
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) ) |
| 28 |
13 1 14 15 16 9 10 20 27
|
evlsevl |
|- ( ph -> ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) = ( Q ` F ) ) |
| 29 |
28
|
fveq1d |
|- ( ph -> ( ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) ` A ) = ( ( Q ` F ) ` A ) ) |
| 30 |
13 14 16 15 4 5 6 7 8 9 10 20 27 12
|
evlsvvval |
|- ( ph -> ( ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) ` A ) = ( R gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
| 31 |
29 30
|
eqtr3d |
|- ( ph -> ( ( Q ` F ) ` A ) = ( R gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |