| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlvvvallem.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 2 |
|
evlvvvallem.p |
|- P = ( I mPoly R ) |
| 3 |
|
evlvvvallem.b |
|- B = ( Base ` P ) |
| 4 |
|
evlvvvallem.k |
|- K = ( Base ` R ) |
| 5 |
|
evlvvvallem.m |
|- M = ( mulGrp ` R ) |
| 6 |
|
evlvvvallem.w |
|- .^ = ( .g ` M ) |
| 7 |
|
evlvvvallem.x |
|- .x. = ( .r ` R ) |
| 8 |
|
evlvvvallem.i |
|- ( ph -> I e. V ) |
| 9 |
|
evlvvvallem.r |
|- ( ph -> R e. CRing ) |
| 10 |
|
evlvvvallem.f |
|- ( ph -> F e. B ) |
| 11 |
|
evlvvvallem.a |
|- ( ph -> A e. ( K ^m I ) ) |
| 12 |
|
eqid |
|- ( I mPoly ( R |`s K ) ) = ( I mPoly ( R |`s K ) ) |
| 13 |
|
eqid |
|- ( R |`s K ) = ( R |`s K ) |
| 14 |
|
eqid |
|- ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` ( I mPoly ( R |`s K ) ) ) |
| 15 |
9
|
crngringd |
|- ( ph -> R e. Ring ) |
| 16 |
4
|
subrgid |
|- ( R e. Ring -> K e. ( SubRing ` R ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> K e. ( SubRing ` R ) ) |
| 18 |
4
|
ressid |
|- ( R e. CRing -> ( R |`s K ) = R ) |
| 19 |
9 18
|
syl |
|- ( ph -> ( R |`s K ) = R ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( I mPoly ( R |`s K ) ) = ( I mPoly R ) ) |
| 21 |
20 2
|
eqtr4di |
|- ( ph -> ( I mPoly ( R |`s K ) ) = P ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` P ) ) |
| 23 |
22 3
|
eqtr4di |
|- ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = B ) |
| 24 |
10 23
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( I mPoly ( R |`s K ) ) ) ) |
| 25 |
1 12 13 14 4 5 6 7 8 9 17 24 11
|
evlsvvvallem2 |
|- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` R ) ) |