| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exidres.1 |  |-  X = ran G | 
						
							| 2 |  | exidres.2 |  |-  U = ( GId ` G ) | 
						
							| 3 |  | exidres.3 |  |-  H = ( G |` ( Y X. Y ) ) | 
						
							| 4 | 1 2 3 | exidreslem |  |-  ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( u = U -> ( u H x ) = ( U H x ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( u = U -> ( ( u H x ) = x <-> ( U H x ) = x ) ) | 
						
							| 7 | 6 | ovanraleqv |  |-  ( u = U -> ( A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) | 
						
							| 8 | 7 | rspcev |  |-  ( ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) -> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) | 
						
							| 10 |  | resexg |  |-  ( G e. ( Magma i^i ExId ) -> ( G |` ( Y X. Y ) ) e. _V ) | 
						
							| 11 | 3 10 | eqeltrid |  |-  ( G e. ( Magma i^i ExId ) -> H e. _V ) | 
						
							| 12 |  | eqid |  |-  dom dom H = dom dom H | 
						
							| 13 | 12 | isexid |  |-  ( H e. _V -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( G e. ( Magma i^i ExId ) -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) | 
						
							| 16 | 9 15 | mpbird |  |-  ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> H e. ExId ) |