Step |
Hyp |
Ref |
Expression |
1 |
|
exidres.1 |
|- X = ran G |
2 |
|
exidres.2 |
|- U = ( GId ` G ) |
3 |
|
exidres.3 |
|- H = ( G |` ( Y X. Y ) ) |
4 |
|
resexg |
|- ( G e. ( Magma i^i ExId ) -> ( G |` ( Y X. Y ) ) e. _V ) |
5 |
3 4
|
eqeltrid |
|- ( G e. ( Magma i^i ExId ) -> H e. _V ) |
6 |
|
eqid |
|- ran H = ran H |
7 |
6
|
gidval |
|- ( H e. _V -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
8 |
5 7
|
syl |
|- ( G e. ( Magma i^i ExId ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
10 |
9
|
adantr |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
11 |
1 2 3
|
exidreslem |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
12 |
11
|
simprd |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
13 |
12
|
adantr |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
14 |
1 2 3
|
exidres |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> H e. ExId ) |
15 |
|
elin |
|- ( H e. ( Magma i^i ExId ) <-> ( H e. Magma /\ H e. ExId ) ) |
16 |
|
rngopidOLD |
|- ( H e. ( Magma i^i ExId ) -> ran H = dom dom H ) |
17 |
15 16
|
sylbir |
|- ( ( H e. Magma /\ H e. ExId ) -> ran H = dom dom H ) |
18 |
17
|
ancoms |
|- ( ( H e. ExId /\ H e. Magma ) -> ran H = dom dom H ) |
19 |
14 18
|
sylan |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ran H = dom dom H ) |
20 |
19
|
raleqdv |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) <-> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
21 |
13 20
|
mpbird |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
22 |
11
|
simpld |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> U e. dom dom H ) |
23 |
22
|
adantr |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> U e. dom dom H ) |
24 |
23 19
|
eleqtrrd |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> U e. ran H ) |
25 |
6
|
exidu1 |
|- ( H e. ( Magma i^i ExId ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
26 |
15 25
|
sylbir |
|- ( ( H e. Magma /\ H e. ExId ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
27 |
26
|
ancoms |
|- ( ( H e. ExId /\ H e. Magma ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
28 |
14 27
|
sylan |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
29 |
|
oveq1 |
|- ( u = U -> ( u H x ) = ( U H x ) ) |
30 |
29
|
eqeq1d |
|- ( u = U -> ( ( u H x ) = x <-> ( U H x ) = x ) ) |
31 |
30
|
ovanraleqv |
|- ( u = U -> ( A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
32 |
31
|
riota2 |
|- ( ( U e. ran H /\ E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) -> ( A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) ) |
33 |
24 28 32
|
syl2anc |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) ) |
34 |
21 33
|
mpbid |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) |
35 |
10 34
|
eqtrd |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( GId ` H ) = U ) |