Step |
Hyp |
Ref |
Expression |
1 |
|
exopxfr2.1 |
|- ( x = <. y , z >. -> ( ph <-> ps ) ) |
2 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
3 |
2
|
biimpi |
|- ( Rel A -> A C_ ( _V X. _V ) ) |
4 |
3
|
sseld |
|- ( Rel A -> ( x e. A -> x e. ( _V X. _V ) ) ) |
5 |
4
|
adantrd |
|- ( Rel A -> ( ( x e. A /\ ph ) -> x e. ( _V X. _V ) ) ) |
6 |
5
|
pm4.71rd |
|- ( Rel A -> ( ( x e. A /\ ph ) <-> ( x e. ( _V X. _V ) /\ ( x e. A /\ ph ) ) ) ) |
7 |
6
|
rexbidv2 |
|- ( Rel A -> ( E. x e. A ph <-> E. x e. ( _V X. _V ) ( x e. A /\ ph ) ) ) |
8 |
|
eleq1 |
|- ( x = <. y , z >. -> ( x e. A <-> <. y , z >. e. A ) ) |
9 |
8 1
|
anbi12d |
|- ( x = <. y , z >. -> ( ( x e. A /\ ph ) <-> ( <. y , z >. e. A /\ ps ) ) ) |
10 |
9
|
exopxfr |
|- ( E. x e. ( _V X. _V ) ( x e. A /\ ph ) <-> E. y E. z ( <. y , z >. e. A /\ ps ) ) |
11 |
7 10
|
bitrdi |
|- ( Rel A -> ( E. x e. A ph <-> E. y E. z ( <. y , z >. e. A /\ ps ) ) ) |