Metamath Proof Explorer


Theorem exopxfr2

Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypothesis exopxfr2.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion exopxfr2 ( Rel 𝐴 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 exopxfr2.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 df-rel ( Rel 𝐴𝐴 ⊆ ( V × V ) )
3 2 biimpi ( Rel 𝐴𝐴 ⊆ ( V × V ) )
4 3 sseld ( Rel 𝐴 → ( 𝑥𝐴𝑥 ∈ ( V × V ) ) )
5 4 adantrd ( Rel 𝐴 → ( ( 𝑥𝐴𝜑 ) → 𝑥 ∈ ( V × V ) ) )
6 5 pm4.71rd ( Rel 𝐴 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( 𝑥𝐴𝜑 ) ) ) )
7 6 rexbidv2 ( Rel 𝐴 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ∈ ( V × V ) ( 𝑥𝐴𝜑 ) ) )
8 eleq1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑥𝐴 ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴 ) )
9 8 1 anbi12d ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( 𝑥𝐴𝜑 ) ↔ ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴𝜓 ) ) )
10 9 exopxfr ( ∃ 𝑥 ∈ ( V × V ) ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴𝜓 ) )
11 7 10 bitrdi ( Rel 𝐴 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑧 ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐴𝜓 ) ) )