Step |
Hyp |
Ref |
Expression |
1 |
|
exopxfr2.1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
df-rel |
⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) |
3 |
2
|
biimpi |
⊢ ( Rel 𝐴 → 𝐴 ⊆ ( V × V ) ) |
4 |
3
|
sseld |
⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) |
5 |
4
|
adantrd |
⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ ( V × V ) ) ) |
6 |
5
|
pm4.71rd |
⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
7 |
6
|
rexbidv2 |
⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ ( V × V ) ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
9 |
8 1
|
anbi12d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) ) |
10 |
9
|
exopxfr |
⊢ ( ∃ 𝑥 ∈ ( V × V ) ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) |
11 |
7 10
|
bitrdi |
⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∃ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) ) |