Metamath Proof Explorer


Theorem f1ovi

Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004)

Ref Expression
Assertion f1ovi
|- _I : _V -1-1-onto-> _V

Proof

Step Hyp Ref Expression
1 f1oi
 |-  ( _I |` _V ) : _V -1-1-onto-> _V
2 reli
 |-  Rel _I
3 dfrel3
 |-  ( Rel _I <-> ( _I |` _V ) = _I )
4 2 3 mpbi
 |-  ( _I |` _V ) = _I
5 f1oeq1
 |-  ( ( _I |` _V ) = _I -> ( ( _I |` _V ) : _V -1-1-onto-> _V <-> _I : _V -1-1-onto-> _V ) )
6 4 5 ax-mp
 |-  ( ( _I |` _V ) : _V -1-1-onto-> _V <-> _I : _V -1-1-onto-> _V )
7 1 6 mpbi
 |-  _I : _V -1-1-onto-> _V