| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f |  |-  ( F : A -1-1-> B -> F : A --> B ) | 
						
							| 2 | 1 | frnd |  |-  ( F : A -1-1-> B -> ran F C_ B ) | 
						
							| 3 |  | f1f |  |-  ( G : C -1-1-> D -> G : C --> D ) | 
						
							| 4 | 3 | frnd |  |-  ( G : C -1-1-> D -> ran G C_ D ) | 
						
							| 5 |  | unss12 |  |-  ( ( ran F C_ B /\ ran G C_ D ) -> ( ran F u. ran G ) C_ ( B u. D ) ) | 
						
							| 6 | 2 4 5 | syl2an |  |-  ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( ran F u. ran G ) C_ ( B u. D ) ) | 
						
							| 7 |  | f1f1orn |  |-  ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) | 
						
							| 8 |  | f1f1orn |  |-  ( G : C -1-1-> D -> G : C -1-1-onto-> ran G ) | 
						
							| 9 | 7 8 | anim12i |  |-  ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( F : A -1-1-onto-> ran F /\ G : C -1-1-onto-> ran G ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( A i^i C ) = (/) ) | 
						
							| 11 |  | ss2in |  |-  ( ( ran F C_ B /\ ran G C_ D ) -> ( ran F i^i ran G ) C_ ( B i^i D ) ) | 
						
							| 12 | 2 4 11 | syl2an |  |-  ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( ran F i^i ran G ) C_ ( B i^i D ) ) | 
						
							| 13 |  | sseq0 |  |-  ( ( ( ran F i^i ran G ) C_ ( B i^i D ) /\ ( B i^i D ) = (/) ) -> ( ran F i^i ran G ) = (/) ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( B i^i D ) = (/) ) -> ( ran F i^i ran G ) = (/) ) | 
						
							| 15 | 14 | adantrl |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( ran F i^i ran G ) = (/) ) | 
						
							| 16 | 10 15 | jca |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( ( A i^i C ) = (/) /\ ( ran F i^i ran G ) = (/) ) ) | 
						
							| 17 |  | f1oun |  |-  ( ( ( F : A -1-1-onto-> ran F /\ G : C -1-1-onto-> ran G ) /\ ( ( A i^i C ) = (/) /\ ( ran F i^i ran G ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) ) | 
						
							| 18 | 9 16 17 | syl2an2r |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) ) | 
						
							| 19 |  | f1of1 |  |-  ( ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) -> ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) | 
						
							| 21 |  | f1ss |  |-  ( ( ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) /\ ( ran F u. ran G ) C_ ( B u. D ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) | 
						
							| 22 | 21 | ancoms |  |-  ( ( ( ran F u. ran G ) C_ ( B u. D ) /\ ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) | 
						
							| 23 | 6 20 22 | syl2an2r |  |-  ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) |