| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fargshift.g |  |-  G = ( x e. ( 0 ..^ ( # ` F ) ) |-> ( F ` ( x + 1 ) ) ) | 
						
							| 2 |  | ffn |  |-  ( F : ( 1 ... N ) --> dom E -> F Fn ( 1 ... N ) ) | 
						
							| 3 |  | fseq1hash |  |-  ( ( N e. NN0 /\ F Fn ( 1 ... N ) ) -> ( # ` F ) = N ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> ( # ` F ) = N ) | 
						
							| 5 |  | eleq1 |  |-  ( N = ( # ` F ) -> ( N e. NN0 <-> ( # ` F ) e. NN0 ) ) | 
						
							| 6 |  | oveq2 |  |-  ( N = ( # ` F ) -> ( 1 ... N ) = ( 1 ... ( # ` F ) ) ) | 
						
							| 7 | 6 | feq2d |  |-  ( N = ( # ` F ) -> ( F : ( 1 ... N ) --> dom E <-> F : ( 1 ... ( # ` F ) ) --> dom E ) ) | 
						
							| 8 | 5 7 | anbi12d |  |-  ( N = ( # ` F ) -> ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) <-> ( ( # ` F ) e. NN0 /\ F : ( 1 ... ( # ` F ) ) --> dom E ) ) ) | 
						
							| 9 | 8 | eqcoms |  |-  ( ( # ` F ) = N -> ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) <-> ( ( # ` F ) e. NN0 /\ F : ( 1 ... ( # ` F ) ) --> dom E ) ) ) | 
						
							| 10 |  | fz0add1fz1 |  |-  ( ( ( # ` F ) e. NN0 /\ x e. ( 0 ..^ ( # ` F ) ) ) -> ( x + 1 ) e. ( 1 ... ( # ` F ) ) ) | 
						
							| 11 |  | ffvelcdm |  |-  ( ( F : ( 1 ... ( # ` F ) ) --> dom E /\ ( x + 1 ) e. ( 1 ... ( # ` F ) ) ) -> ( F ` ( x + 1 ) ) e. dom E ) | 
						
							| 12 | 11 | expcom |  |-  ( ( x + 1 ) e. ( 1 ... ( # ` F ) ) -> ( F : ( 1 ... ( # ` F ) ) --> dom E -> ( F ` ( x + 1 ) ) e. dom E ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( ( # ` F ) e. NN0 /\ x e. ( 0 ..^ ( # ` F ) ) ) -> ( F : ( 1 ... ( # ` F ) ) --> dom E -> ( F ` ( x + 1 ) ) e. dom E ) ) | 
						
							| 14 | 13 | impancom |  |-  ( ( ( # ` F ) e. NN0 /\ F : ( 1 ... ( # ` F ) ) --> dom E ) -> ( x e. ( 0 ..^ ( # ` F ) ) -> ( F ` ( x + 1 ) ) e. dom E ) ) | 
						
							| 15 | 14 | ralrimiv |  |-  ( ( ( # ` F ) e. NN0 /\ F : ( 1 ... ( # ` F ) ) --> dom E ) -> A. x e. ( 0 ..^ ( # ` F ) ) ( F ` ( x + 1 ) ) e. dom E ) | 
						
							| 16 | 9 15 | biimtrdi |  |-  ( ( # ` F ) = N -> ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> A. x e. ( 0 ..^ ( # ` F ) ) ( F ` ( x + 1 ) ) e. dom E ) ) | 
						
							| 17 | 4 16 | mpcom |  |-  ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> A. x e. ( 0 ..^ ( # ` F ) ) ( F ` ( x + 1 ) ) e. dom E ) | 
						
							| 18 | 1 | fmpt |  |-  ( A. x e. ( 0 ..^ ( # ` F ) ) ( F ` ( x + 1 ) ) e. dom E <-> G : ( 0 ..^ ( # ` F ) ) --> dom E ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ( N e. NN0 /\ F : ( 1 ... N ) --> dom E ) -> G : ( 0 ..^ ( # ` F ) ) --> dom E ) |