| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fargshift.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↦  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸  →  𝐹  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 3 |  | fseq1hash | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  Fn  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝑁  ∈  ℕ0  ↔  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 1 ... 𝑁 )  =  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 7 | 6 | feq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸  ↔  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  ↔  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) ) ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  ↔  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) ) ) | 
						
							| 10 |  | fz0add1fz1 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑥  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) | 
						
							| 12 | 11 | expcom | ⊢ ( ( 𝑥  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) ) | 
						
							| 14 | 13 | impancom | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) ) | 
						
							| 15 | 14 | ralrimiv | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  →  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) | 
						
							| 16 | 9 15 | biimtrdi | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) ) | 
						
							| 17 | 4 16 | mpcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸 ) | 
						
							| 18 | 1 | fmpt | ⊢ ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ ( 𝑥  +  1 ) )  ∈  dom  𝐸  ↔  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) |