Metamath Proof Explorer


Theorem fargshiftf1

Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017)

Ref Expression
Hypothesis fargshift.g 𝐺 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↦ ( 𝐹 ‘ ( 𝑥 + 1 ) ) )
Assertion fargshiftf1 ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 )

Proof

Step Hyp Ref Expression
1 fargshift.g 𝐺 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↦ ( 𝐹 ‘ ( 𝑥 + 1 ) ) )
2 f1f ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 )
3 1 fargshiftf ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 )
4 2 3 sylan2 ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 )
5 ffn ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸𝐹 Fn ( 1 ... 𝑁 ) )
6 fseq1hash ( ( 𝑁 ∈ ℕ0𝐹 Fn ( 1 ... 𝑁 ) ) → ( ♯ ‘ 𝐹 ) = 𝑁 )
7 5 6 sylan2 ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) ⟶ dom 𝐸 ) → ( ♯ ‘ 𝐹 ) = 𝑁 )
8 2 7 sylan2 ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → ( ♯ ‘ 𝐹 ) = 𝑁 )
9 eleq1 ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑁 ∈ ℕ0 ) )
10 oveq2 ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( 1 ... 𝑁 ) )
11 f1eq2 ( ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( 1 ... 𝑁 ) → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) )
12 10 11 syl ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) )
13 9 12 anbi12d ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 ) ↔ ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) ) )
14 dff13 ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 ↔ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) )
15 fz0add1fz1 ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) )
16 fz0add1fz1 ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) )
17 15 16 anim12dan ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )
18 fveq2 ( 𝑘 = ( 𝑦 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) )
19 18 eqeq1d ( 𝑘 = ( 𝑦 + 1 ) → ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) ↔ ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹𝑙 ) ) )
20 eqeq1 ( 𝑘 = ( 𝑦 + 1 ) → ( 𝑘 = 𝑙 ↔ ( 𝑦 + 1 ) = 𝑙 ) )
21 19 20 imbi12d ( 𝑘 = ( 𝑦 + 1 ) → ( ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ↔ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹𝑙 ) → ( 𝑦 + 1 ) = 𝑙 ) ) )
22 fveq2 ( 𝑙 = ( 𝑧 + 1 ) → ( 𝐹𝑙 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) )
23 22 eqeq2d ( 𝑙 = ( 𝑧 + 1 ) → ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹𝑙 ) ↔ ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
24 eqeq2 ( 𝑙 = ( 𝑧 + 1 ) → ( ( 𝑦 + 1 ) = 𝑙 ↔ ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) )
25 23 24 imbi12d ( 𝑙 = ( 𝑧 + 1 ) → ( ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹𝑙 ) → ( 𝑦 + 1 ) = 𝑙 ) ↔ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) )
26 21 25 rspc2v ( ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) → ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) )
27 26 adantl ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) → ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) )
28 1 fargshiftfv ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) → ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) )
29 28 expcom ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) )
30 29 com13 ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) )
31 30 adantr ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) )
32 31 impcom ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) )
33 32 impcom ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( 𝐺𝑦 ) = ( 𝐹 ‘ ( 𝑦 + 1 ) ) )
34 1 fargshiftfv ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) → ( 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
35 34 expcom ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) )
36 35 com13 ( 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) )
37 36 adantl ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) )
38 37 impcom ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
39 38 impcom ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( 𝐺𝑧 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) )
40 33 39 eqeq12d ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
41 40 adantr ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
42 41 adantr ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
43 elfzoelz ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ℤ )
44 43 zcnd ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ℂ )
45 44 adantr ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑦 ∈ ℂ )
46 45 adantl ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → 𝑦 ∈ ℂ )
47 elfzoelz ( 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑧 ∈ ℤ )
48 47 zcnd ( 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑧 ∈ ℂ )
49 48 adantl ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑧 ∈ ℂ )
50 49 adantl ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → 𝑧 ∈ ℂ )
51 1cnd ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → 1 ∈ ℂ )
52 46 50 51 3jca ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) )
53 52 adantl ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) )
54 53 adantr ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) )
55 addcan2 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ↔ 𝑦 = 𝑧 ) )
56 54 55 syl ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ↔ 𝑦 = 𝑧 ) )
57 56 imbi2d ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → 𝑦 = 𝑧 ) ) )
58 57 biimpa ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → 𝑦 = 𝑧 ) )
59 42 58 sylbid ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) )
60 59 ex ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
61 27 60 syld ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
62 61 exp31 ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) ) )
63 62 com24 ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) → ( ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) ) )
64 63 imp ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) )
65 64 com13 ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑦 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑧 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) )
66 17 65 mpd ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
67 66 expcom ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) )
68 67 com13 ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) ) )
69 68 ralrimdvv ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹𝑘 ) = ( 𝐹𝑙 ) → 𝑘 = 𝑙 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
70 14 69 sylbi ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
71 70 impcom ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 ) → ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) )
72 13 71 syl6bir ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
73 8 72 mpcom ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) )
74 dff13 ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 ↔ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
75 4 73 74 sylanbrc ( ( 𝑁 ∈ ℕ0𝐹 : ( 1 ... 𝑁 ) –1-1→ dom 𝐸 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐸 )