| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fargshift.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↦  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 2 |  | f1f | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸  →  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 ) | 
						
							| 3 | 1 | fargshiftf | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 ) | 
						
							| 5 |  | ffn | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸  →  𝐹  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | fseq1hash | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  Fn  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 8 | 2 7 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 9 |  | eleq1 | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ↔  𝑁  ∈  ℕ0 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( 1 ... ( ♯ ‘ 𝐹 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | f1eq2 | ⊢ ( ( 1 ... ( ♯ ‘ 𝐹 ) )  =  ( 1 ... 𝑁 )  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸  ↔  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸  ↔  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸 )  ↔  ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 ) ) ) | 
						
							| 14 |  | dff13 | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸  ↔  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) ) ) | 
						
							| 15 |  | fz0add1fz1 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 16 |  | fz0add1fz1 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 17 | 15 16 | anim12dan | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑦  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑘  =  ( 𝑦  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  ↔  ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 20 |  | eqeq1 | ⊢ ( 𝑘  =  ( 𝑦  +  1 )  →  ( 𝑘  =  𝑙  ↔  ( 𝑦  +  1 )  =  𝑙 ) ) | 
						
							| 21 | 19 20 | imbi12d | ⊢ ( 𝑘  =  ( 𝑦  +  1 )  →  ( ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  ↔  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ 𝑙 )  →  ( 𝑦  +  1 )  =  𝑙 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑙  =  ( 𝑧  +  1 )  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑙  =  ( 𝑧  +  1 )  →  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ 𝑙 )  ↔  ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 24 |  | eqeq2 | ⊢ ( 𝑙  =  ( 𝑧  +  1 )  →  ( ( 𝑦  +  1 )  =  𝑙  ↔  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) ) | 
						
							| 25 | 23 24 | imbi12d | ⊢ ( 𝑙  =  ( 𝑧  +  1 )  →  ( ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ 𝑙 )  →  ( 𝑦  +  1 )  =  𝑙 )  ↔  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) ) ) | 
						
							| 26 | 21 25 | rspc2v | ⊢ ( ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  →  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  →  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) ) ) | 
						
							| 28 | 1 | fargshiftfv | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 30 | 29 | com13 | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 33 | 32 | impcom | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 34 | 1 | fargshiftfv | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  →  ( 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 35 | 34 | expcom | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 36 | 35 | com13 | ⊢ ( 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) | 
						
							| 40 | 33 39 | eqeq12d | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) ) ) ) | 
						
							| 43 |  | elfzoelz | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 44 | 43 | zcnd | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 47 |  | elfzoelz | ⊢ ( 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 48 | 47 | zcnd | ⊢ ( 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑧  ∈  ℂ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝑧  ∈  ℂ ) | 
						
							| 51 |  | 1cnd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  1  ∈  ℂ ) | 
						
							| 52 | 46 50 51 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  1  ∈  ℂ ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  1  ∈  ℂ ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  1  ∈  ℂ ) ) | 
						
							| 55 |  | addcan2 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑦  +  1 )  =  ( 𝑧  +  1 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑦  +  1 )  =  ( 𝑧  +  1 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 57 | 56 | imbi2d | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) )  ↔  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 58 | 57 | biimpa | ⊢ ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) )  →  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 59 | 42 58 | sylbid | ⊢ ( ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑦  +  1 ) )  =  ( 𝐹 ‘ ( 𝑧  +  1 ) )  →  ( 𝑦  +  1 )  =  ( 𝑧  +  1 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 61 | 27 60 | syld | ⊢ ( ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) )  →  ( ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 62 | 61 | exp31 | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) ) | 
						
							| 63 | 62 | com24 | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 )  →  ( ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 65 | 64 | com13 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑧  +  1 )  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 66 | 17 65 | mpd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 67 | 66 | expcom | ⊢ ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 68 | 67 | com13 | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 69 | 68 | ralrimdvv | ⊢ ( ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑙  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑙 )  →  𝑘  =  𝑙 ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 70 | 14 69 | sylbi | ⊢ ( 𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 71 | 70 | impcom | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝐹 : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸 )  →  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 72 | 13 71 | biimtrrdi | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 )  →  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 73 | 8 72 | mpcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 )  →  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 74 |  | dff13 | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸  ↔  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 75 | 4 73 74 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) –1-1→ dom  𝐸 )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐸 ) |