Metamath Proof Explorer


Theorem fargshiftf1

Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017)

Ref Expression
Hypothesis fargshift.g G=x0..^FFx+1
Assertion fargshiftf1 N0F:1N1-1domEG:0..^F1-1domE

Proof

Step Hyp Ref Expression
1 fargshift.g G=x0..^FFx+1
2 f1f F:1N1-1domEF:1NdomE
3 1 fargshiftf N0F:1NdomEG:0..^FdomE
4 2 3 sylan2 N0F:1N1-1domEG:0..^FdomE
5 ffn F:1NdomEFFn1N
6 fseq1hash N0FFn1NF=N
7 5 6 sylan2 N0F:1NdomEF=N
8 2 7 sylan2 N0F:1N1-1domEF=N
9 eleq1 F=NF0N0
10 oveq2 F=N1F=1N
11 f1eq2 1F=1NF:1F1-1domEF:1N1-1domE
12 10 11 syl F=NF:1F1-1domEF:1N1-1domE
13 9 12 anbi12d F=NF0F:1F1-1domEN0F:1N1-1domE
14 dff13 F:1F1-1domEF:1FdomEk1Fl1FFk=Flk=l
15 fz0add1fz1 F0y0..^Fy+11F
16 fz0add1fz1 F0z0..^Fz+11F
17 15 16 anim12dan F0y0..^Fz0..^Fy+11Fz+11F
18 fveq2 k=y+1Fk=Fy+1
19 18 eqeq1d k=y+1Fk=FlFy+1=Fl
20 eqeq1 k=y+1k=ly+1=l
21 19 20 imbi12d k=y+1Fk=Flk=lFy+1=Fly+1=l
22 fveq2 l=z+1Fl=Fz+1
23 22 eqeq2d l=z+1Fy+1=FlFy+1=Fz+1
24 eqeq2 l=z+1y+1=ly+1=z+1
25 23 24 imbi12d l=z+1Fy+1=Fly+1=lFy+1=Fz+1y+1=z+1
26 21 25 rspc2v y+11Fz+11Fk1Fl1FFk=Flk=lFy+1=Fz+1y+1=z+1
27 26 adantl F:1FdomEF0y0..^Fz0..^Fy+11Fz+11Fk1Fl1FFk=Flk=lFy+1=Fz+1y+1=z+1
28 1 fargshiftfv F0F:1FdomEy0..^FGy=Fy+1
29 28 expcom F:1FdomEF0y0..^FGy=Fy+1
30 29 com13 y0..^FF0F:1FdomEGy=Fy+1
31 30 adantr y0..^Fz0..^FF0F:1FdomEGy=Fy+1
32 31 impcom F0y0..^Fz0..^FF:1FdomEGy=Fy+1
33 32 impcom F:1FdomEF0y0..^Fz0..^FGy=Fy+1
34 1 fargshiftfv F0F:1FdomEz0..^FGz=Fz+1
35 34 expcom F:1FdomEF0z0..^FGz=Fz+1
36 35 com13 z0..^FF0F:1FdomEGz=Fz+1
37 36 adantl y0..^Fz0..^FF0F:1FdomEGz=Fz+1
38 37 impcom F0y0..^Fz0..^FF:1FdomEGz=Fz+1
39 38 impcom F:1FdomEF0y0..^Fz0..^FGz=Fz+1
40 33 39 eqeq12d F:1FdomEF0y0..^Fz0..^FGy=GzFy+1=Fz+1
41 40 adantr F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FGy=GzFy+1=Fz+1
42 41 adantr F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FFy+1=Fz+1y+1=z+1Gy=GzFy+1=Fz+1
43 elfzoelz y0..^Fy
44 43 zcnd y0..^Fy
45 44 adantr y0..^Fz0..^Fy
46 45 adantl F0y0..^Fz0..^Fy
47 elfzoelz z0..^Fz
48 47 zcnd z0..^Fz
49 48 adantl y0..^Fz0..^Fz
50 49 adantl F0y0..^Fz0..^Fz
51 1cnd F0y0..^Fz0..^F1
52 46 50 51 3jca F0y0..^Fz0..^Fyz1
53 52 adantl F:1FdomEF0y0..^Fz0..^Fyz1
54 53 adantr F:1FdomEF0y0..^Fz0..^Fy+11Fz+11Fyz1
55 addcan2 yz1y+1=z+1y=z
56 54 55 syl F:1FdomEF0y0..^Fz0..^Fy+11Fz+11Fy+1=z+1y=z
57 56 imbi2d F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FFy+1=Fz+1y+1=z+1Fy+1=Fz+1y=z
58 57 biimpa F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FFy+1=Fz+1y+1=z+1Fy+1=Fz+1y=z
59 42 58 sylbid F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FFy+1=Fz+1y+1=z+1Gy=Gzy=z
60 59 ex F:1FdomEF0y0..^Fz0..^Fy+11Fz+11FFy+1=Fz+1y+1=z+1Gy=Gzy=z
61 27 60 syld F:1FdomEF0y0..^Fz0..^Fy+11Fz+11Fk1Fl1FFk=Flk=lGy=Gzy=z
62 61 exp31 F:1FdomEF0y0..^Fz0..^Fy+11Fz+11Fk1Fl1FFk=Flk=lGy=Gzy=z
63 62 com24 F:1FdomEk1Fl1FFk=Flk=ly+11Fz+11FF0y0..^Fz0..^FGy=Gzy=z
64 63 imp F:1FdomEk1Fl1FFk=Flk=ly+11Fz+11FF0y0..^Fz0..^FGy=Gzy=z
65 64 com13 F0y0..^Fz0..^Fy+11Fz+11FF:1FdomEk1Fl1FFk=Flk=lGy=Gzy=z
66 17 65 mpd F0y0..^Fz0..^FF:1FdomEk1Fl1FFk=Flk=lGy=Gzy=z
67 66 expcom y0..^Fz0..^FF0F:1FdomEk1Fl1FFk=Flk=lGy=Gzy=z
68 67 com13 F:1FdomEk1Fl1FFk=Flk=lF0y0..^Fz0..^FGy=Gzy=z
69 68 ralrimdvv F:1FdomEk1Fl1FFk=Flk=lF0y0..^Fz0..^FGy=Gzy=z
70 14 69 sylbi F:1F1-1domEF0y0..^Fz0..^FGy=Gzy=z
71 70 impcom F0F:1F1-1domEy0..^Fz0..^FGy=Gzy=z
72 13 71 syl6bir F=NN0F:1N1-1domEy0..^Fz0..^FGy=Gzy=z
73 8 72 mpcom N0F:1N1-1domEy0..^Fz0..^FGy=Gzy=z
74 dff13 G:0..^F1-1domEG:0..^FdomEy0..^Fz0..^FGy=Gzy=z
75 4 73 74 sylanbrc N0F:1N1-1domEG:0..^F1-1domE