Metamath Proof Explorer


Theorem fargshiftfv

Description: If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017)

Ref Expression
Hypothesis fargshift.g G = x 0 ..^ F F x + 1
Assertion fargshiftfv N 0 F : 1 N dom E X 0 ..^ N G X = F X + 1

Proof

Step Hyp Ref Expression
1 fargshift.g G = x 0 ..^ F F x + 1
2 ffn F : 1 N dom E F Fn 1 N
3 fseq1hash N 0 F Fn 1 N F = N
4 oveq2 N = F 0 ..^ N = 0 ..^ F
5 4 eqcoms F = N 0 ..^ N = 0 ..^ F
6 5 eleq2d F = N X 0 ..^ N X 0 ..^ F
7 6 biimpd F = N X 0 ..^ N X 0 ..^ F
8 3 7 syl N 0 F Fn 1 N X 0 ..^ N X 0 ..^ F
9 2 8 sylan2 N 0 F : 1 N dom E X 0 ..^ N X 0 ..^ F
10 9 imp N 0 F : 1 N dom E X 0 ..^ N X 0 ..^ F
11 fvex F X + 1 V
12 fvoveq1 x = X F x + 1 = F X + 1
13 12 1 fvmptg X 0 ..^ F F X + 1 V G X = F X + 1
14 10 11 13 sylancl N 0 F : 1 N dom E X 0 ..^ N G X = F X + 1
15 14 ex N 0 F : 1 N dom E X 0 ..^ N G X = F X + 1