| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fargshift.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↦  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸  →  𝐹  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 3 |  | fseq1hash | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  Fn  ( 1 ... 𝑁 ) )  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 | 4 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( 𝑋  ∈  ( 0 ..^ 𝑁 )  ↔  𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 7 | 6 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 )  =  𝑁  →  ( 𝑋  ∈  ( 0 ..^ 𝑁 )  →  𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  Fn  ( 1 ... 𝑁 ) )  →  ( 𝑋  ∈  ( 0 ..^ 𝑁 )  →  𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 9 | 2 8 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ( 𝑋  ∈  ( 0 ..^ 𝑁 )  →  𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  ∧  𝑋  ∈  ( 0 ..^ 𝑁 ) )  →  𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 |  | fvex | ⊢ ( 𝐹 ‘ ( 𝑋  +  1 ) )  ∈  V | 
						
							| 12 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  =  ( 𝐹 ‘ ( 𝑋  +  1 ) ) ) | 
						
							| 13 | 12 1 | fvmptg | ⊢ ( ( 𝑋  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐹 ‘ ( 𝑋  +  1 ) )  ∈  V )  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝑋  +  1 ) ) ) | 
						
							| 14 | 10 11 13 | sylancl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  ∧  𝑋  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝑋  +  1 ) ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ dom  𝐸 )  →  ( 𝑋  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝑋  +  1 ) ) ) ) |