Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | feqresmptf.1 | |- F/_ x F |
|
feqresmptf.2 | |- ( ph -> F : A --> B ) |
||
feqresmptf.3 | |- ( ph -> C C_ A ) |
||
Assertion | feqresmptf | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqresmptf.1 | |- F/_ x F |
|
2 | feqresmptf.2 | |- ( ph -> F : A --> B ) |
|
3 | feqresmptf.3 | |- ( ph -> C C_ A ) |
|
4 | nfcv | |- F/_ x C |
|
5 | 1 4 | nfres | |- F/_ x ( F |` C ) |
6 | 2 3 | fssresd | |- ( ph -> ( F |` C ) : C --> B ) |
7 | 4 5 6 | feqmptdf | |- ( ph -> ( F |` C ) = ( x e. C |-> ( ( F |` C ) ` x ) ) ) |
8 | fvres | |- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
|
9 | 8 | mpteq2ia | |- ( x e. C |-> ( ( F |` C ) ` x ) ) = ( x e. C |-> ( F ` x ) ) |
10 | 7 9 | eqtrdi | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) |