Metamath Proof Explorer


Theorem feqresmptf

Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses feqresmptf.1
|- F/_ x F
feqresmptf.2
|- ( ph -> F : A --> B )
feqresmptf.3
|- ( ph -> C C_ A )
Assertion feqresmptf
|- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 feqresmptf.1
 |-  F/_ x F
2 feqresmptf.2
 |-  ( ph -> F : A --> B )
3 feqresmptf.3
 |-  ( ph -> C C_ A )
4 nfcv
 |-  F/_ x C
5 1 4 nfres
 |-  F/_ x ( F |` C )
6 2 3 fssresd
 |-  ( ph -> ( F |` C ) : C --> B )
7 4 5 6 feqmptdf
 |-  ( ph -> ( F |` C ) = ( x e. C |-> ( ( F |` C ) ` x ) ) )
8 fvres
 |-  ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) )
9 8 mpteq2ia
 |-  ( x e. C |-> ( ( F |` C ) ` x ) ) = ( x e. C |-> ( F ` x ) )
10 7 9 eqtrdi
 |-  ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) )