Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | feqresmptf.1 | |- F/_ x F | |
| feqresmptf.2 | |- ( ph -> F : A --> B ) | ||
| feqresmptf.3 | |- ( ph -> C C_ A ) | ||
| Assertion | feqresmptf | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feqresmptf.1 | |- F/_ x F | |
| 2 | feqresmptf.2 | |- ( ph -> F : A --> B ) | |
| 3 | feqresmptf.3 | |- ( ph -> C C_ A ) | |
| 4 | nfcv | |- F/_ x C | |
| 5 | 1 4 | nfres | |- F/_ x ( F |` C ) | 
| 6 | 2 3 | fssresd | |- ( ph -> ( F |` C ) : C --> B ) | 
| 7 | 4 5 6 | feqmptdf | |- ( ph -> ( F |` C ) = ( x e. C |-> ( ( F |` C ) ` x ) ) ) | 
| 8 | fvres | |- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) | |
| 9 | 8 | mpteq2ia | |- ( x e. C |-> ( ( F |` C ) ` x ) ) = ( x e. C |-> ( F ` x ) ) | 
| 10 | 7 9 | eqtrdi | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) |