Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | feqresmptf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| feqresmptf.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| feqresmptf.3 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| Assertion | feqresmptf | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feqresmptf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | feqresmptf.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | feqresmptf.3 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 5 | 1 4 | nfres | ⊢ Ⅎ 𝑥 ( 𝐹 ↾ 𝐶 ) | 
| 6 | 2 3 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) | 
| 7 | 4 5 6 | feqmptdf | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) | 
| 8 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 9 | 8 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) | 
| 10 | 7 9 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |