Metamath Proof Explorer


Theorem feqresmptf

Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses feqresmptf.1 𝑥 𝐹
feqresmptf.2 ( 𝜑𝐹 : 𝐴𝐵 )
feqresmptf.3 ( 𝜑𝐶𝐴 )
Assertion feqresmptf ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 feqresmptf.1 𝑥 𝐹
2 feqresmptf.2 ( 𝜑𝐹 : 𝐴𝐵 )
3 feqresmptf.3 ( 𝜑𝐶𝐴 )
4 nfcv 𝑥 𝐶
5 1 4 nfres 𝑥 ( 𝐹𝐶 )
6 2 3 fssresd ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐵 )
7 4 5 6 feqmptdf ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( ( 𝐹𝐶 ) ‘ 𝑥 ) ) )
8 fvres ( 𝑥𝐶 → ( ( 𝐹𝐶 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
9 8 mpteq2ia ( 𝑥𝐶 ↦ ( ( 𝐹𝐶 ) ‘ 𝑥 ) ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) )
10 7 9 eqtrdi ( 𝜑 → ( 𝐹𝐶 ) = ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) )