Step |
Hyp |
Ref |
Expression |
1 |
|
fiuni |
|- ( A e. _V -> U. A = U. ( fi ` A ) ) |
2 |
1
|
sseq1d |
|- ( A e. _V -> ( U. A C_ X <-> U. ( fi ` A ) C_ X ) ) |
3 |
|
sspwuni |
|- ( A C_ ~P X <-> U. A C_ X ) |
4 |
|
sspwuni |
|- ( ( fi ` A ) C_ ~P X <-> U. ( fi ` A ) C_ X ) |
5 |
2 3 4
|
3bitr4g |
|- ( A e. _V -> ( A C_ ~P X <-> ( fi ` A ) C_ ~P X ) ) |
6 |
5
|
biimpa |
|- ( ( A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) |
7 |
|
fvprc |
|- ( -. A e. _V -> ( fi ` A ) = (/) ) |
8 |
|
0ss |
|- (/) C_ ~P X |
9 |
7 8
|
eqsstrdi |
|- ( -. A e. _V -> ( fi ` A ) C_ ~P X ) |
10 |
9
|
adantr |
|- ( ( -. A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) |
11 |
6 10
|
pm2.61ian |
|- ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) |