Metamath Proof Explorer


Theorem fiuni

Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiuni
|- ( A e. V -> U. A = U. ( fi ` A ) )

Proof

Step Hyp Ref Expression
1 ssfii
 |-  ( A e. V -> A C_ ( fi ` A ) )
2 1 unissd
 |-  ( A e. V -> U. A C_ U. ( fi ` A ) )
3 fipwuni
 |-  ( fi ` A ) C_ ~P U. A
4 3 unissi
 |-  U. ( fi ` A ) C_ U. ~P U. A
5 unipw
 |-  U. ~P U. A = U. A
6 4 5 sseqtri
 |-  U. ( fi ` A ) C_ U. A
7 6 a1i
 |-  ( A e. V -> U. ( fi ` A ) C_ U. A )
8 2 7 eqssd
 |-  ( A e. V -> U. A = U. ( fi ` A ) )