Step |
Hyp |
Ref |
Expression |
1 |
|
5nn0 |
|- 5 e. NN0 |
2 |
|
flsqrt |
|- ( ( ( X e. RR /\ 0 <_ X ) /\ 5 e. NN0 ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) |
4 |
|
5cn |
|- 5 e. CC |
5 |
4
|
sqvali |
|- ( 5 ^ 2 ) = ( 5 x. 5 ) |
6 |
|
5t5e25 |
|- ( 5 x. 5 ) = ; 2 5 |
7 |
5 6
|
eqtri |
|- ( 5 ^ 2 ) = ; 2 5 |
8 |
7
|
breq1i |
|- ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) |
9 |
8
|
a1i |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) ) |
10 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
11 |
10
|
oveq1i |
|- ( ( 5 + 1 ) ^ 2 ) = ( 6 ^ 2 ) |
12 |
|
6cn |
|- 6 e. CC |
13 |
12
|
sqvali |
|- ( 6 ^ 2 ) = ( 6 x. 6 ) |
14 |
|
6t6e36 |
|- ( 6 x. 6 ) = ; 3 6 |
15 |
13 14
|
eqtri |
|- ( 6 ^ 2 ) = ; 3 6 |
16 |
11 15
|
eqtri |
|- ( ( 5 + 1 ) ^ 2 ) = ; 3 6 |
17 |
16
|
breq2i |
|- ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) |
18 |
17
|
a1i |
|- ( ( X e. RR /\ 0 <_ X ) -> ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) ) |
19 |
9 18
|
anbi12d |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) <-> ( ; 2 5 <_ X /\ X < ; 3 6 ) ) ) |
20 |
3 19
|
bitr2d |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( ; 2 5 <_ X /\ X < ; 3 6 ) <-> ( |_ ` ( sqrt ` X ) ) = 5 ) ) |