| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn0 |
|- 5 e. NN0 |
| 2 |
|
flsqrt |
|- ( ( ( X e. RR /\ 0 <_ X ) /\ 5 e. NN0 ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) |
| 4 |
|
5cn |
|- 5 e. CC |
| 5 |
4
|
sqvali |
|- ( 5 ^ 2 ) = ( 5 x. 5 ) |
| 6 |
|
5t5e25 |
|- ( 5 x. 5 ) = ; 2 5 |
| 7 |
5 6
|
eqtri |
|- ( 5 ^ 2 ) = ; 2 5 |
| 8 |
7
|
breq1i |
|- ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) |
| 9 |
8
|
a1i |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) ) |
| 10 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 11 |
10
|
oveq1i |
|- ( ( 5 + 1 ) ^ 2 ) = ( 6 ^ 2 ) |
| 12 |
|
6cn |
|- 6 e. CC |
| 13 |
12
|
sqvali |
|- ( 6 ^ 2 ) = ( 6 x. 6 ) |
| 14 |
|
6t6e36 |
|- ( 6 x. 6 ) = ; 3 6 |
| 15 |
13 14
|
eqtri |
|- ( 6 ^ 2 ) = ; 3 6 |
| 16 |
11 15
|
eqtri |
|- ( ( 5 + 1 ) ^ 2 ) = ; 3 6 |
| 17 |
16
|
breq2i |
|- ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) |
| 18 |
17
|
a1i |
|- ( ( X e. RR /\ 0 <_ X ) -> ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) ) |
| 19 |
9 18
|
anbi12d |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) <-> ( ; 2 5 <_ X /\ X < ; 3 6 ) ) ) |
| 20 |
3 19
|
bitr2d |
|- ( ( X e. RR /\ 0 <_ X ) -> ( ( ; 2 5 <_ X /\ X < ; 3 6 ) <-> ( |_ ` ( sqrt ` X ) ) = 5 ) ) |