| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 2 |  | flsqrt |  |-  ( ( ( X e. RR /\ 0 <_ X ) /\ 5 e. NN0 ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( ( X e. RR /\ 0 <_ X ) -> ( ( |_ ` ( sqrt ` X ) ) = 5 <-> ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) ) ) | 
						
							| 4 |  | 5cn |  |-  5 e. CC | 
						
							| 5 | 4 | sqvali |  |-  ( 5 ^ 2 ) = ( 5 x. 5 ) | 
						
							| 6 |  | 5t5e25 |  |-  ( 5 x. 5 ) = ; 2 5 | 
						
							| 7 | 5 6 | eqtri |  |-  ( 5 ^ 2 ) = ; 2 5 | 
						
							| 8 | 7 | breq1i |  |-  ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) | 
						
							| 9 | 8 | a1i |  |-  ( ( X e. RR /\ 0 <_ X ) -> ( ( 5 ^ 2 ) <_ X <-> ; 2 5 <_ X ) ) | 
						
							| 10 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( 5 + 1 ) ^ 2 ) = ( 6 ^ 2 ) | 
						
							| 12 |  | 6cn |  |-  6 e. CC | 
						
							| 13 | 12 | sqvali |  |-  ( 6 ^ 2 ) = ( 6 x. 6 ) | 
						
							| 14 |  | 6t6e36 |  |-  ( 6 x. 6 ) = ; 3 6 | 
						
							| 15 | 13 14 | eqtri |  |-  ( 6 ^ 2 ) = ; 3 6 | 
						
							| 16 | 11 15 | eqtri |  |-  ( ( 5 + 1 ) ^ 2 ) = ; 3 6 | 
						
							| 17 | 16 | breq2i |  |-  ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) | 
						
							| 18 | 17 | a1i |  |-  ( ( X e. RR /\ 0 <_ X ) -> ( X < ( ( 5 + 1 ) ^ 2 ) <-> X < ; 3 6 ) ) | 
						
							| 19 | 9 18 | anbi12d |  |-  ( ( X e. RR /\ 0 <_ X ) -> ( ( ( 5 ^ 2 ) <_ X /\ X < ( ( 5 + 1 ) ^ 2 ) ) <-> ( ; 2 5 <_ X /\ X < ; 3 6 ) ) ) | 
						
							| 20 | 3 19 | bitr2d |  |-  ( ( X e. RR /\ 0 <_ X ) -> ( ( ; 2 5 <_ X /\ X < ; 3 6 ) <-> ( |_ ` ( sqrt ` X ) ) = 5 ) ) |