| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 2 |  | flsqrt | ⊢ ( ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  ∧  5  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( √ ‘ 𝑋 ) )  =  5  ↔  ( ( 5 ↑ 2 )  ≤  𝑋  ∧  𝑋  <  ( ( 5  +  1 ) ↑ 2 ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  →  ( ( ⌊ ‘ ( √ ‘ 𝑋 ) )  =  5  ↔  ( ( 5 ↑ 2 )  ≤  𝑋  ∧  𝑋  <  ( ( 5  +  1 ) ↑ 2 ) ) ) ) | 
						
							| 4 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 5 | 4 | sqvali | ⊢ ( 5 ↑ 2 )  =  ( 5  ·  5 ) | 
						
							| 6 |  | 5t5e25 | ⊢ ( 5  ·  5 )  =  ; 2 5 | 
						
							| 7 | 5 6 | eqtri | ⊢ ( 5 ↑ 2 )  =  ; 2 5 | 
						
							| 8 | 7 | breq1i | ⊢ ( ( 5 ↑ 2 )  ≤  𝑋  ↔  ; 2 5  ≤  𝑋 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  →  ( ( 5 ↑ 2 )  ≤  𝑋  ↔  ; 2 5  ≤  𝑋 ) ) | 
						
							| 10 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( 5  +  1 ) ↑ 2 )  =  ( 6 ↑ 2 ) | 
						
							| 12 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 13 | 12 | sqvali | ⊢ ( 6 ↑ 2 )  =  ( 6  ·  6 ) | 
						
							| 14 |  | 6t6e36 | ⊢ ( 6  ·  6 )  =  ; 3 6 | 
						
							| 15 | 13 14 | eqtri | ⊢ ( 6 ↑ 2 )  =  ; 3 6 | 
						
							| 16 | 11 15 | eqtri | ⊢ ( ( 5  +  1 ) ↑ 2 )  =  ; 3 6 | 
						
							| 17 | 16 | breq2i | ⊢ ( 𝑋  <  ( ( 5  +  1 ) ↑ 2 )  ↔  𝑋  <  ; 3 6 ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  →  ( 𝑋  <  ( ( 5  +  1 ) ↑ 2 )  ↔  𝑋  <  ; 3 6 ) ) | 
						
							| 19 | 9 18 | anbi12d | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  →  ( ( ( 5 ↑ 2 )  ≤  𝑋  ∧  𝑋  <  ( ( 5  +  1 ) ↑ 2 ) )  ↔  ( ; 2 5  ≤  𝑋  ∧  𝑋  <  ; 3 6 ) ) ) | 
						
							| 20 | 3 19 | bitr2d | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ≤  𝑋 )  →  ( ( ; 2 5  ≤  𝑋  ∧  𝑋  <  ; 3 6 )  ↔  ( ⌊ ‘ ( √ ‘ 𝑋 ) )  =  5 ) ) |